Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The high-entropy strategy has gained increasing popularity in the design of functional materials due to its four core effects. In this study, we introduce the concept of a "high-entropy magnet (HEM)", which integrates diverse magnetic compounds within a single phase and is anticipated to demonstrate unique magnetism-related properties beyond that of its individual components. This concept is exemplified in AB-type layered Kagome intermetallic compounds (Ti,Zr,Hf,Nb,Fe)Fe. It is revealed that the competition among individual magnetic states and the presence of magnetic Fe in originally nonmagnetic high-entropy sites lead to intricate magnetic transitions with temperature. Consequently, unusual transformations in thermal expansion property (from positive to zero, negative, and back to near zero) are observed. Specifically, a near-zero thermal expansion is achieved over a wide temperature range (10-360 K, α = -0.62 × 10 K) in the A-site equal-atomic ratio (TiZrHfNbFe)Fe compound, which is associated with successive deflection of average Fe moments. The HEM strategy holds promise for discovering new functionalities in solid materials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.4c10681 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!