MHC Class II Supertypes Affect Survival and Lifetime Reproductive Success in a Migratory Songbird.

Mol Ecol

Departamento de Ciencias Integradas, Facultad de Ciencias Experimentales, Universidad de Huelva, Huelva, Spain.

Published: November 2024

The major histocompatibility complex (MHC) plays a critical role in the immune response against pathogens. Its high polymorphism is thought to be mainly the consequence of host-pathogen co-evolution, but elucidating the mechanism(s) driving MHC evolution remains challenging for natural populations. We investigated the diversity of MHC class II genes in a wild population of pied flycatchers Ficedula hypoleuca and tested its associations with two key components of individual fitness: lifetime reproductive success and survival. Among 180 breeding adults in our study population, we found 182 unique MHC class II exon 2 alleles. The alleles showed a strong signal of positive selection and grouped into nine functional supertypes based on physicochemical properties at the inferred antigen-binding sites. Three supertypes were found in > 98% of the sampled individuals, indicating that they are nearly fixed in the population. We found no rare supertypes in the population, as all supertypes were present in > 70% of individuals. Three supertypes were related to different components of individual fitness: two were associated with lower offspring production over time, while the third was positively associated with survival. Overall, the substantial allelic and functional diversity and the relationship between specific supertypes and fitness are in accordance with the notion that balancing selection maintains MHC class II diversity in the study population, possibly with fluctuating selection as the underlying mechanism. The absence of rare supertypes in the population suggests that the balancing selection is not driven by rare-allele advantage.

Download full-text PDF

Source
http://dx.doi.org/10.1111/mec.17554DOI Listing

Publication Analysis

Top Keywords

mhc class
16
supertypes
8
lifetime reproductive
8
reproductive success
8
components individual
8
individual fitness
8
study population
8
three supertypes
8
rare supertypes
8
supertypes population
8

Similar Publications

The T cell antigen presentation platform MR1 consists of 6 allomorphs in humans that differ by no more than 5 amino acids. The principal function of this highly conserved molecule involves presenting microbial metabolites to the abundant mucosal-associated invariant T (MAIT) cell subset. Recent developments suggest that the role of MR1 extends to presenting antigens from cancer cells, a function dependent on the K43 residue in the MR1 antigen binding cleft.

View Article and Find Full Text PDF

Trogocytosis-mediated immune evasion in the tumor microenvironment.

Exp Mol Med

January 2025

Institute of Advanced Bio-Industry Convergence, Yonsei University, Seoul, Korea.

Trogocytosis is a dynamic cellular process characterized by the exchange of the plasma membrane and associated cytosol during cell-to-cell interactions. Unlike phagocytosis, this transfer maintains the surface localization of transferred membrane molecules. For example, CD4 T cells engaging with antigen-presenting cells undergo trogocytosis, which facilitates the transfer of antigen-loaded major histocompatibility complex (MHC) class II molecules from antigen-presenting cells to CD4 T cells.

View Article and Find Full Text PDF

Based on the success of cancer immunotherapy, personalized cancer vaccines have emerged as a leading oncology treatment. Antigen presentation on MHC class I (MHC-I) is crucial for the adaptive immune response to cancer cells, necessitating highly predictive computational methods to model this phenomenon. Here, we introduce HLApollo, a transformer-based model for peptide-MHC-I (pMHC-I) presentation prediction, leveraging the language of peptides, MHC, and source proteins.

View Article and Find Full Text PDF

Hodgkin Reed-Sternberg (HRS) cells of classic Hodgkin lymphoma (cHL), like many solid tumors, elicit ineffective immune responses. However, patients with cHL are highly responsive to PD-1 blockade, which largely depends on HRS cell-specific retention of MHC class II and implicates CD4 T cells and additional MHC class I-independent immune effectors. Here, we utilize single-cell RNA sequencing and spatial analysis to define shared circulating and microenvironmental features of the immune response to PD-1 blockade in cHL.

View Article and Find Full Text PDF

Chimeric Peptide-Engineered Polyprodrug Enhances Cytotoxic T Cell Response by Inducing Immunogenic Cell Death and Upregulating Major Histocompatibility Complex Class I.

ACS Nano

December 2024

The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China.

Tumor-specific cytotoxic T cell immunity is critically dependent on effective antigen presentation and sustained signal transduction. However, this immune response is frequently compromised by the inherently low immunogenicity of breast cancer and the deficiency in major histocompatibility complex class I (MHC-I) expression. Herein, a chimeric peptide-engineered stoichiometric polyprodrug (PDPP) is fabricated to potentiate the cytotoxic T cell response, characterized by a high drug loading capacity and precise stoichiometric drug ratio, of which the immunogenic cell death (ICD) inducer of protoporphyrin IX (PpIX) and the epigenetic drug of decitabine (DAC) are condensed into a polyprodrug called PpIX-DAC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!