An electron spin qubit in a silicon donor atom is a promising candidate for quantum information processing because of its long coherence time. To be sensed with a single-electron transistor, the donor atom is usually located near an interface, where the donor states can be coupled with interface states. Here we study the phonon-assisted spin-relaxation mechanisms when a donor is coupled to confined (quantum-dot-like) interface states. We find that both Zeeman interaction and spin-orbit interaction can hybridize spin and orbital states, each contributing to phonon-assisted spin relaxation in addition to the spin relaxation for a bulk donor or a quantum dot. When the applied magnetic field is weak (compared to orbital spacing), the phonon assisted spin relaxation shows the dependence. We find that there are peaks (hot spots) in the -dependent and detuning dependent spin relaxation due to strong hybridization of orbital states with opposite spin. We also find spin relaxation dips (cool spots) due to the interference of different relaxation channels. Qubit operations near spin relaxation hot spots can be useful for the fast spin initialization and near cool spots for the preservation of quantum information during the transfer of spin qubits.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11497471PMC
http://dx.doi.org/10.1103/physrevb.98.195307DOI Listing

Publication Analysis

Top Keywords

spin relaxation
28
spin
12
interface states
12
coupled interface
8
donor atom
8
orbital states
8
hot spots
8
cool spots
8
relaxation
7
donor
6

Similar Publications

Weyl semimetals are a novel class of topological materials with unique electronic structures and distinct properties. HfRhGe stands out as a noncentrosymmetric Weyl semimetal with unconventional superconducting characteristics. Using muon-spin rotation and relaxation (µSR) spectroscopy and thermodynamic measurements, a fully gapped superconducting state is identified in HfRhGe that breaks time-reversal symmetry at the superconducting transition.

View Article and Find Full Text PDF

Homonuclear decoupled INADEQUATE NMR methods with improved sensitivity and resolution in solid-state NMR.

J Magn Reson

December 2024

Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181, UCCS - Unité de Catalyse et Chimie du Solide, F-59000 Lille, France. Electronic address:

The two-dimensional (2D) refocused INADEQUATE NMR experiment, which correlates double-quantum (DQ) and single-quantum (SQ) coherences, is widely used to probe the chemical connectivities in solids. Nevertheless, the multiplets along the F dimension reduce the resolution and sensitivity of this experiment. The Composite-Refocusing (CR) technique with two excitation pulses has been proposed to suppress these multiplets in 2D INADEQUATE spectra of liquids.

View Article and Find Full Text PDF

Objectives: To explore texture analysis' ability on T and T relaxation maps to classify liver fibrosis into no-to-mild liver fibrosis (nmF) versus severe fibrosis (sF) group using machine learning algorithms and histology as reference standard.

Materials And Methods: In this single-center study, patients undergoing 3 T MRI who also had histology examination were retrospectively enrolled. SNAPSHOT-FLASH sequence for T1 mapping, radial turbo-spin-echo sequence for T2 mapping and spin-echo echo-planar-imaging magnetic resonance elastography (MRE) sequences were analyzed.

View Article and Find Full Text PDF

Recent years have witnessed an intense effort to unravel magnetic field effects in electrocatalysis, as they can enhance the performance of common electrocatalysts. Both experimental and theoretical studies have shown that magnetic fields may affect, among others, the macroscopic spin-orbital ordering, charge transport, bubble release, and electron transfer kinetics. This paper highlights Electrochemical Impedance Spectroscopy (EIS) as a tool to analyze and separate the effects of magnetic field on both the oxygen reduction and evolution reactions at cobalt iron oxide electrodes.

View Article and Find Full Text PDF

Quasi-One-Dimensional Spin Dynamics in a Molecular Spin Liquid System.

Phys Rev Lett

December 2024

RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan.

The molecular triangular lattice system, β^{'}-EtMe_{3}Sb[Pd(dmit)_{2}]_{2}, is considered as a candidate material for the quantum spin liquid state, although ongoing debates arise from recent controversial results. Here, the results of electron spin resonance and muon-spin relaxation measurements on β^{'}-EtMe_{3}Sb[Pd(dmit)_{2}]_{2} are presented. Both results indicate characteristic behaviors related to quasi-one-dimensional spin dynamics, whereas the direction of anisotropy found in electron spin resonance is in contradiction with previous theories.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!