Declining water resources and their contamination with chemicals risk the aquatic environment. Therefore, this work was devoted to designing a magnetically recyclable photocatalyst suitable for water treatment, namely, a TiO /FeO@g-C composite. Different preparation conditions were investigated together with the corresponding characteristics. The pure defective anatase TiO phase of low band gap energy was detected through XRD and DRS analyses. Low charge recombination after the formation of defects was confirmed. The performances of the prepared photocatalysts in phenol degradation under solar light were evaluated, revealing the superior efficiency of TiO prepared hydrothermally at 200 °C/24 h relative to intact TiO. This best sample was incorporated with FeO@g-C to facilitate its recovery and reuse. This successful combination was confirmed using XRD, Raman and XPS tools. TiO /FeO@g-C 2 : 1 formulation was found to be the most photoactive and could be reused up to five times without significant loss in its efficiency. Therefore, the precisely developed magnetic photocatalyst is promising for application in the water-treatment process.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11497582 | PMC |
http://dx.doi.org/10.1039/d4ra05990e | DOI Listing |
Environ Technol
December 2024
College of Resources and Environmental Engineering, Guizhou University, Guiyang, People's Republic of China.
Increasing antimony (Sb) pollution has become a global concern, but there is still a lack of economically efficient adsorbents for its remediation. In this study, a novel remediation material was developed by precipitating TiO onto waste herb-residue biochar (named TBC). The effectiveness and adsorption mechanisms of the material for Sb(III) removal were investigated through adsorption experiments, and the enhancement pathway of traditional herb decoction on the effectiveness of modified biochar was analyzed.
View Article and Find Full Text PDFNat Commun
December 2024
School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, Nanjing, China.
Ferroelectric films are highly sought-after in micro-electro-mechanical systems, particularly with the trend towards miniaturization. However, their tendency to depolarize and degradation in piezoelectric properties when exposed to packaging procedures at temperatures exceeding 260 °C remains a significant challenge. Here, we reveal the prerequisites for self-poling and leverage these insights to achieve unprecedented macroscopic performance through a two-step approach involving texture construction and hierarchical heterogeneity engineering.
View Article and Find Full Text PDFTalanta
December 2024
Université de Lorraine, CNRS, LIEC, F-54000, Nancy, France.
There is a growing interest in the development of methods for the detection of nanoparticle (NP) toxicity to living organisms based on the analysis of relevant multidimensional data sets. In particular the detection of preliminary signs of NPs toxicity effects would benefit from the selection of data featuring NPs-induced alterations of biological barriers. Accordingly, we present an original Topological Data Analysis (TDA) of the nanomechanical properties of Escherichia coli cell surface, evaluated by multiparametric Atomic Force Microscopy (AFM) after exposure of the cells to increasing concentrations of titanium dioxide nanoparticles (TiONPs).
View Article and Find Full Text PDFACS Cent Sci
December 2024
Department of Chemistry, Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China.
An efficient regiospecific co-assembly (RSCA) strategy is developed for general synthesis of mesoporous metal oxides with pore walls precisely decorated by highly dispersed noble metal nanocrystals with customized parameters (diameter and composition). It features the rational utilization of the specific interactions between hydrophilic molecular precursors, hydrophobic noble metal nanocrystals, and amphiphilic block copolymers, to achieve regiospecific co-assembly as confirmed by molecular dynamics simulations. Through this RSCA strategy, we achieved a controllable synthesis of a variety of functional mesoporous metal oxide composites (e.
View Article and Find Full Text PDFACS Cent Sci
December 2024
Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States.
Added electrons and holes in semiconducting (nano)materials typically occupy "trap states," which often determine their photophysical properties and chemical reactivity. However, trap states are usually ill-defined, with few insights into their stoichiometry or structure. Our laboratory previously reported that aqueous colloidal TiO nanoparticles prepared from TiCl + HO have two classes of electron trap states, termed and .
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!