Traumatic brain injuries: a neuropsychological review.

Front Behav Neurosci

Graduate School of Education and Psychology, Pepperdine University, Los Angeles, CA, United States.

Published: October 2024

The best predictor of functional outcome in victims of traumatic brain injury (TBI) is a neuropsychological evaluation. An exponential growth of research into TBI has focused on diagnosis and treatment. Extant literature lacks a comprehensive neuropsychological review that is simultaneously scholarly and practical. In response, our group included, and went beyond a general overview of TBI's, which commonly include definition, types, severity, and pathophysiology. We incorporate reasons behind the use of particular neuroimaging techniques, as well as the most recent findings on common neuropsychological assessments conducted in TBI cases, and their relationship to outcome. In addition, we include tables outlining estimated recovery trajectories of different age groups, their risk factors and we encompass phenomenological studies, further covering the range of existing-promising tools for cognitive rehabilitation/remediation purposes. Finally, we highlight gaps in current research and directions that would be beneficial to pursue.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11497466PMC
http://dx.doi.org/10.3389/fnbeh.2024.1326115DOI Listing

Publication Analysis

Top Keywords

traumatic brain
8
neuropsychological review
8
brain injuries
4
neuropsychological
4
injuries neuropsychological
4
review best
4
best predictor
4
predictor functional
4
functional outcome
4
outcome victims
4

Similar Publications

Objective: Increased intracranial pressure (ICP) can worsen the clinical condition of traumatic brain injury (TBI) patients. One non-invasive and easily bedside-performed technique to estimate ICP is ultrasonographic measurement of optic nerve sheath diameter (ONSD). This study aimed to analyze ONSD and correlate it with ICP values obtained by intraparenchymal monitoring to establish the ONSD threshold value for elevated ICP and reference range of ONSD in severe TBI patients.

View Article and Find Full Text PDF

Background: Neurological dysfunction is a common complication of traumatic brain injury (TBI), and early treatments are critical for the long-term prognosis. This study aimed to investigate whether hypidone hydrochloride (YL-0919) improves neurological function impairment in mice with TBI.

Methods: TBI was induced in adult male C57BL/6J mice using the controlled cortical impact (CCI) method.

View Article and Find Full Text PDF

Neurological disorders significantly impact the central nervous system, contributing to a growing public health crisis globally. The spectrum of these disorders includes neurodevelopmental and neurodegenerative diseases. This manuscript reviews the crucial roles of cellular signalling pathways in the pathophysiology of these conditions, focusing primarily on glutaminase/glutamate/NMDA receptor signalling, alongside the mitogen-activated protein kinase (MAPK) pathways-ERK1/2, C-JNK, and P38 MAPK.

View Article and Find Full Text PDF

Purpose: Traumatic brain injury (TBI) is a life-altering event that can abruptly and drastically derail an individual's expected life trajectory. While some adults who have sustained a TBI go on to make a full recovery, many live with persisting disability many years postinjury. Helping patients adjust to and flourish with disability that may persist should be as much a part of rehabilitative practice as addressing impairment, activity, and participation-level changes after TBI.

View Article and Find Full Text PDF

Serum metabolic fingerprinting on Ag@AuNWs for traumatic brain injury diagnosis.

Nanotechnology

January 2025

Xi'an Jiaotong University, xian ning west road 28#, xi'an, Xi'an, None Selected, 710049, CHINA.

Accurate and rapid diagnosis of traumatic brain injury (TBI) is essential for high-quality medical services. Nonetheless, the current diagnostic platform still has challenges in rapidly and accurately analysing clinical samples. Here, we prepared a highly stable, repeatable and sensitive gold-plated silver core-shell nanowire (Ag@AuNWs) for surface-enhanced Raman spectroscopy (SERS) metabolic fingerprint diagnosis of TBI.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!