Developing efficacious catalysts with superior Cl resistance and polychlorinated byproduct inhibition capability is crucial for realizing the environmentally friendly purification of chlorinated volatile organic compounds (CVOCs). Activating CVOC molecules and desorbing Cl species by modulating the metal-oxygen property is a promising strategy to fulfill these. Herein, a bifunctional CoRu/AlO catalyst with synergistic Co and Ru interactions (Ru-O-Co species) was rationally fabricated, which possesses abundant surface Co and Ru sites and collaboratively facilitates the activation of lattice oxygen (O) and molecular oxygen (O → O → O), accelerating 1,2-dichloroethane (1,2-DCE) decomposition the reaction route of enolic species → aldehydes → carboxylate/carbonate. Furthermore, CoRu/AlO stimulates 1,2-DCE oxidation under humid conditions as HO molecules can be easily activated to active *OH (potential oxidizing agent) over Ru species, accelerating C-Cl dissociation and Cl desorption and promoting the transformation of catecholate-type (C═O) species to easily oxidizable carboxylic acid (COOH) species, remarkably suppressing the formation of hazardous CCl and CHClCHCl. This study provides critical insights into the development of bifunctional catalysts to synergistically activate surface oxygen species and HO molecules for industrial CVOC stable and efficient elimination.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.est.4c05663 | DOI Listing |
Int J Biol Macromol
December 2024
Materials Polymer Laboratory, Macromolecular Chemistry Department, Faculty of Chemistry, University of Sciences and Technology Houari Boumediene USTHB, B.P. 32 El-Alia, 16111 Algiers, Algeria.
Herein, we propose magnetic nanocomposites as a powerful new catalyst for organic pollutant reduction. Polypyrrole (PPy) was synthesized in situ within the semi-interpenetrating alginate (Alg)/gelatin (Ge) network in presence of α-FeO as encapsulating matrix and inorganic filler, respectively. The polymeric matrix can act as bifunctional agent such as a binder and stabilizer to improve nanocatalyst stability while preserving their catalytic/magnetic performances.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources of Ministry of Education, Wuhan University of Technology, Wuhan, Hubei 430073, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, Hubei 430073, China. Electronic address:
Development of efficient and stable bifunctional transition metal phosphide catalysts is critical for advancing hydrogen production technologies. Herein, RuCo co-doped NiP (RuCoNiP) was designed and synthesized by one-step electrodeposition for Ni electronic structure modulation, and evolved to RuCoNiP@α-Ni(OH) and RuCoNiP@Co/Ni(OH) heterointerfaces by self-assembled reconstruction during HER and OER processes, respectively. RuCoNiP@α-Ni(OH) enhances HER activity (305.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, PR China.
The exploration and rational design of high-performance, durable, and non-precious-metal bifunctional oxygen electrocatalysts are highly desired for the large-scale application of overall water splitting. Herein, an effective and straightforward coupling approach was developed to fabricate high-performance bifunctional OER/HER electrocatalysts based on core-shell nanostructure comprising a Ni/NiN core and a NiFe(OH) shell. The as-prepared Ni/NiN@NiFe(OH)-4 catalyst exhibited low overpotentials of 57 and 243 mV at 10 mA cm for the HER and OER in 1.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300401, PR China; Engineering Research Center of Ministry of Education for Intelligent Rehabilitation Device and Detection Technology, Hebei University of Technology, Tianjin 300401, PR China; Hebei Key Laboratory of Smart Sensing and Human-Robot Interaction, Hebei University of Technology, Tianjin 300401, PR China; School of Mechanical Engineering, Hebei University of Technology, 5340 Xiping Road, Beichen District, Tianjin 300401, PR China. Electronic address:
Transition-metal-loaded carbon-based electrocatalysts are promising alternatives to conventional precious metal electrocatalysts for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) in high-performance zinc-air batteries. However, efficiently doping transition-metal single atoms onto carbon-based frameworks is a significant challenge. Herein, an improved template-sacrificing method combining a two-step carbonization process is proposed to fabricate Cu/Co diatomic sites coanchored on a three-dimensional nitrogen-doped carbon-based framework.
View Article and Find Full Text PDFInorg Chem
December 2024
Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China.
Amide compounds are widely present in drug molecules and natural products, which can be synthesized by acid-amine condensation. It is urgent to design new photocatalysts for achieving both nitroaromatic reduction and C-H oxidation to obtain raw materials, carboxylic acids, and aromatic amines. Herein, a novel isopolymolybdate-incorporated photoactive metal-organic framework, -TPT, was constructed by combining the oxidation catalyst [MoO], Ni(II) cation, and photosensitive ligand 2,4,6-tri(4-pyridyl)-1,3,5-triazine (TPT).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!