The gyroid structure from self-assembly is highly attractive for optical applications such as photonic crystals and metamaterials. However, due to the direction-dependent nature of these applications, achieving a monograin-level structure over a large area has remained challenging. In this study, the fabrication of unidirectionally oriented anisotropic nanocylinders of polystyrene-block-polydimethylsiloxane (PS-b-PDMS) is reported block copolymer thin films up to a 4-inch scale via a shear-rolling process, followed by solvent annealing to induce phase transition to nearly monograin gyroid structures. Grazing-incidence small-angle X-ray scattering (GISAXS) analysis and cross-sectional scanning electron microscope (SEM) images in the direction parallel to the shear-rolling direction reveal the preferential orientation with the (111) plane onto the YZ axis of the film, while only the (110) plane on the YZ axis of the film is observed in the perpendicular direction, with grain sizes approaching single-grain levels. For metamaterial applications, the PDMS domain is selectively removed, and gold is electroplated to produce monograin gold gyroid films.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.202405717 | DOI Listing |
Light Sci Appl
January 2025
Division of Computer, Electrical and Mathematical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
We propose and demonstrate a data-driven plasmonic metascreen that efficiently absorbs incident light over a wide spectral range in an ultra-thin silicon film. By embedding a double-nanoring silver array within a 20 nm ultrathin amorphous silicon (a-Si) layer, we achieve a significant enhancement of light absorption. This enhancement arises from the interaction between the resonant cavity modes and localized plasmonic modes, requiring precise tuning of plasmon resonances to match the absorption region of the silicon active layer.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
Université Claude Bernard Lyon 1, INSA Lyon, Université Jean Monnet, CNRS UMR 5223, Ingénierie des Matériaux Polymères, F-69621 Cédex, France. Electronic address:
Passerini reaction was advantageously exploited to hydrophobize carboxymethyl cellulose (CMC) and alginates (ALG) by employing various hydrophobic aldehydes and isocyanides. The Passerini reaction, carried out in ecofriendly conditions, allowed to design never described twofold hydrophobized polysaccharide derivatives via the covalent grafting of two hydrophobic moieties. The modified CMC and ALG products were in-depth characterized to guaranty the success of the modification and to calculate the degrees of substitution (DS).
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Changning Road 865, Shanghai, 200050, China.
Chemo-sensor designing involves a time-consuming trial-and-error screening process, which commonly cannot lead to optimal SR features (Sensitivity, Selectivity, Speed, Stability, and Reversibility). Due to strong path dependence on reported groups/mechanisms, conventional chemo-sensors often fail to meet critical application demands, especially in achieving high reversibility without compromising other features. Here, a three-step screen and design strategy is developed for gaining customized chemo-sensors, through Structure modeling; MEMS (Micro Electro Mechanical Systems) analysis, and Performance verification.
View Article and Find Full Text PDFSmall
January 2025
School of Mechanical Engineering, Korea University, 145 Anam-Ro, Seongbuk-Gu, Seoul, 02841, Republic of Korea.
Passive temperature controls like passive daytime radiative cooling (PDRC)-heating (PDRH), and thermal insulation are essential to meet the growing demand for energy-efficient thermal solutions. When combined with advanced functions like electromagnetic interference shielding, these technologies can significantly enhance scalability. However, existing approaches using single thin films or uniform porous materials face inherent limitations in optimizing versatile functions, while lightweight, insulating aerogels can extend their multifunctionality by manipulating pores and fillers.
View Article and Find Full Text PDFSci Rep
January 2025
Centre for Advanced Devices and Systems, Faculty of Engineering, Multimedia University, Persiaran Multimedia, 63100, Cyberjaya, Selangor, Malaysia.
In recent decades, poorly insulated windows have increased the energy consumption of heating and cooling systems, thus contributing to excessive carbon dioxide emissions and other related pollution issues. From this perspective, the electrochromic (EC) windows could be a tangible solution as the indoor conditions are highly controllable by these smart devices even at a low applied voltage. Literally, vanadium pentoxide (VO) is a renowned candidate for the EC application due to its multicolor appearance and substantial lithium insertion capacity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!