A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Enhancing late postmortem interval prediction: a pilot study integrating proteomics and machine learning to distinguish human bone remains over 15 years. | LitMetric

Background: Determining the postmortem interval (PMI) accurately remains a significant challenge in forensic sciences, especially for intervals greater than 5 years (late PMI). Traditional methods often fail due to the extensive degradation of soft tissues, necessitating reliance on bone material examinations. The precision in estimating PMIs diminishes with time, particularly for intervals between 1 and 5 years, dropping to about 50% accuracy. This study aims to address this issue by identifying key protein biomarkers through proteomics and machine learning, ultimately enhancing the accuracy of PMI estimation for intervals exceeding 15 years.

Methods: Proteomic analysis was conducted using LC-MS/MS on skeletal remains, specifically focusing on the tibia and ribs. Protein identification was performed using two strategies: a tryptic-specific search and a semitryptic search, the latter being particularly beneficial in cases of natural protein degradation. The Random Forest algorithm was used to model protein abundance data, enabling the prediction of PMI. A thorough screening process, combining importance scores and SHAP values, was employed to identify the most informative proteins for model's training and accuracy.

Results: A minimal set of three biomarkers-K1C13, PGS1, and CO3A1-was identified, significantly improving the prediction accuracy between PMIs of 15 and 20 years. The model, based on protein abundance data from semitryptic peptides in tibia samples, achieved sustained 100% accuracy across 100 iterations. In contrast, non-supervised methods like PCA and MCA did not yield comparable results. Additionally, the use of semitryptic peptides outperformed tryptic peptides, particularly in tibia proteomes, suggesting their potential reliability in late PMI prediction.

Conclusions: Despite limitations such as sample size and PMI range, this study demonstrates the feasibility of combining proteomics and machine learning for accurate late PMI predictions. Future research should focus on broader PMI ranges and various bone types to further refine and standardize forensic proteomic methodologies for PMI estimation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11515459PMC
http://dx.doi.org/10.1186/s40659-024-00552-8DOI Listing

Publication Analysis

Top Keywords

proteomics machine
12
machine learning
12
late pmi
12
pmi
9
postmortem interval
8
pmi estimation
8
protein abundance
8
abundance data
8
semitryptic peptides
8
peptides tibia
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!