Background: Geranyllinalool, a natural diterpenoid found in plants, has a floral and woody aroma, making it valuable in flavors and fragrances. Currently, its synthesis primarily depends on chemical methods, which are environmentally harmful and economically unsustainable. Microbial synthesis through metabolic engineering has shown potential for producing geranyllinalool. However, achieving efficient synthesis remains challenging owing to the limited availability of terpenoid precursors in microorganisms. Thus, an artificial isopentenol utilization pathway (IUP) was constructed and introduced in Escherichia coli to enhance precursor availability and further improve terpenoid synthesis.
Results: We first constructed an artificial IUP in E. coli to enhance the supply of precursor geranylgeranyl diphosphate (GGPP) and then screened geranyllinalool synthases from plants to achieve efficient synthesis of geranyllinalool (274.78 ± 2.48 mg/L). To further improve geranyllinalool synthesis, we optimized various cultivation factors, including carbon source, IPTG concentration, and prenol addition and obtained 447.51 ± 6.92 mg/L of geranyllinalool after 72 h of shaken flask fermentation. Moreover, a scaled-up production in a 5-L fermenter was investigated to give 2.06 g/L of geranyllinalool through fed-batch fermentation. To the best of our knowledge, this is the highest reported titer so far.
Conclusions: Efficient synthesis of geranyllinalool in E. coli can be achieved through a two-step pathway and optimization of culture conditions. The findings of this study provide valuable insights into the production of other terpenoids in E. coli.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11515624 | PMC |
http://dx.doi.org/10.1186/s12934-024-02563-2 | DOI Listing |
Talanta
December 2024
Faculty of Chemistry, University of Mazandaran, Babolsar, Iran. Electronic address:
Preparation of carbon dots (CDs) from biomass waste is of great interest due to its low cost synthesis, environmental compatibility and functionalization without adding dangerous chemicals. Herein, S-doped carbon dot (SCD) was synthesized using agricultural waste as carbon precursors and modified in-situ with rhodamine B dye (SCD@RHB) to construct efficient flouresent probe. SCD@RHB was loaded into HKUST-1 metal-organic framework (SCD@RHB/HKUST-1) and the probe was employed as ratiometric flouresent (RF) sensor for the determination of ciprofloxacin (CIP) antibiotic in trace level.
View Article and Find Full Text PDFBioorg Chem
January 2025
College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108 China; Institute of Enzyme Catalysis and Synthetic Biotechnology, Fuzhou University, Fuzhou 350108 China. Electronic address:
Hydroxytyrosol, a naturally occurring chemical with antioxidant and antiviral properties, is widely used in the nutrition, pharmaceutical, and cosmetic industries. In the present study, a modularized cascade composed of Modules 1 and 2 was designed and implemented to convert l-tyrosine to hydroxytyrosol. Module 1 was a four-enzymatic cascade for converting l-tyrosine to tyrosol.
View Article and Find Full Text PDFEnviron Res
January 2025
School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
Manganese(IV) (Mn(IV)) reduction coupled with ammonium (NH-N) oxidation (Mnammox) has been found to play a significant role in the nitrogen (N) cycle within natural ecosystems. However, research and application of the autotrophic NH-N removal process mediated by manganese oxides (MnOx) in wastewater treatment are currently limited. This study established autotrophic NH-N removal sludge reactors mediated by various MnOx types, including δ-MnO (δ-MSR), β-MnO (β-MSR), α-MnO (α-MSR), and natural Mn ore (MOSR), investigating their NH-N removal performances and mechanisms under different initial N loading and pH conditions.
View Article and Find Full Text PDFPlant Physiol Biochem
December 2024
College of Horticulture, South China Agricultural University, Guangzhou 510642, China. Electronic address:
Chinese cabbage is an important vegetable in southern China. Excessive nitrogen fertilizer application can lead to the accumulation of nitrate in edible organs, which affects food value. Hence, the cultivation of varieties with high nitrogen utilization efficiency (NUE) and low nitrate accumulation is essential for molecular breeding.
View Article and Find Full Text PDFTalanta
January 2025
State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, PR China. Electronic address:
Natural polyphenolic antioxidants are widely present in foods such as fruits and vegetables, meanwhile applied in food processing and storage to prevent the formation of harmful compounds. While excessive antioxidants lead to negative impacts on human health. Hence, it is crucial to accurately detect antioxidant levels in order to enhance the overall nutritional content and food safety.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!