A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Comparison in prostate cancer diagnosis with PSA 4-10 ng/mL: radiomics-based model VS. PI-RADS v2.1. | LitMetric

Background: To evaluate accuracy of MRI-based radiomics in diagnosing prostate cancer (PCa) in patients with PSA levels between 4 and 10 ng/mL and compare it with the latest Prostate Imaging Reporting and Data System (PI-RADS v2.1) score.

Methods: 221 patients with prostate lesions and PSA levels in 4-10 ng/mL, including 154 and 67 cases in the training and validation groups. Pathological confirmation of all patients was accomplished by the use of MRI-TRUS fusion targeted biopsy or systematic transrectal ultrasound (TRUS) guided biopsy. 851 radiomic features were extracted from each lesion of ADC and T2WI images. The least absolute shrinkage and selection operator (LASSO) regression algorithm and logistic regression were employed to select features and build the ADC and T2WI model. The combined model was obtained based on the ADC and T2WI features. The clinical benefit and diagnostic accuracy of the three radiomics models and PI-RADS v2.1 score were evaluated.

Results: 10 radiomic features were ultimately selected from the ADC images, 13 from the T2WI images and 7 from the combined models. The ADC, T2WI and combined models achieved satisfactory diagnostic accuracy in the training [AUC:0.945 (ADC), 0.939 (T2WI), 0.979 (combined)] and validation groups [AUC: 0.942 (ADC), 0.943 (T2WI), 0.959 (combined)], which was significantly higher than those in PI-RADS v2.1 model (0.825 for training cohort and 0.853 for validation cohort). Compared with the PI-RADS v2.1 score, the three radiomics models generated superior PCa diagnostic performance in both the training (p = 0.002, p = 0.005, p < 0.001) and validation groups (p = 0.045, p = 0.035, p = 0.015).

Conclusion: Radiomics based on ADC and T2WI images can better identify PCa in patients with PSA 4-10 ng/mL, and MRI-based radiomics significantly outperforms the PI-RADS v2.1 score.

Clinical Trial Number: Not applicable.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11515792PMC
http://dx.doi.org/10.1186/s12894-024-01625-2DOI Listing

Publication Analysis

Top Keywords

pi-rads v21
20
adc t2wi
16
prostate cancer
8
4-10 ng/ml
8
psa levels
8
validation groups
8
radiomic features
8
t2wi images
8
diagnostic accuracy
8
three radiomics
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!