Carbonaceous and carbon-coated electrodes are ubiquitous in electrochemical energy storage and conversion technologies due to their electrochemical stability, lightweight nature, and relatively low cost. However, traditional reliance on conductive additives and binders leads to impermanent electrical pathways. Here, a general approach is presented to fabricate robust electrodes with a progressive failure mechanism by introducing carbide-based interconnects grown via carbothermal conversion of (5 wt%) titanium hydride nanoparticles. This method concurrently enhances both electrical and mechanical properties within the electrode architecture. The resulting chemical bonding between active materials establishes a novel mechanism to maintain stable electrical pathways during cycling. Employed as Li-ion battery anodes, these electrodes exhibit improved cyclability, achieving 80% capacity retention after 800 fast-charge cycles at moderate loading (1 mAh cm ). High loading cells with areal capacity of 3 mAh cm show significantly improved cycle life over the same number of cycles. This performance improvement is attributed to the absence of significant impedance growth and a thinner solid electrolyte interphase (SEI) layer formed at high current densities (4C) as demonstrated by X-ray photoelectron spectroscopy and transmission electron microscopy studies. The enhanced conductivity facilitates SEI formation, lowering ionic impedance and mitigating lithium plating, ultimately leading to the reported extended cycle life.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11633473 | PMC |
http://dx.doi.org/10.1002/advs.202408277 | DOI Listing |
Angew Chem Int Ed Engl
January 2025
Fudan University, Laboratory of Advanced Materials, Shanghai, 200433, Shanghai, CHINA.
Tellurium (Te), with its rich valence states (-2 to +6), could endow aqueous batteries with potentially high specific capacity. However, achieving complete and stable hypervalent Te0/Te4+ electrochemistry in an aqueous environment poses significant challenges, owing to the sluggish reduction kinetics, the easy dissolution of Te4+ species, and a controversial energy storage mechanism. Herein, for the first time, we demonstrate an amorphous strategy for robust aqueous TeO2/Te electrochemistry.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry, The University of Hong Kong, Hong Kong Island 000000, Hong Kong SAR, China.
Methanol (ME) is a liquid hydrogen carrier, ideal for on-site-on-demand H generation, avoiding its costly and risky distribution issues, but this "ME-to-H" electric conversion suffers from high voltage (energy consumption) and competitive oxygen evolution reaction. Herein, we demonstrate that a synergistic cofunctional PtPd/(Ni,Co)(OH) catalyst with Pt single atoms (Pt) and Pd nanoclusters (Pd) anchored on OH-vacancy(V)-rich (Ni,Co)(OH) nanoparticles create synergistic triadic active sites, allowing for methanol-enhanced low-voltage H generation. For MOR, OH* is preferentially adsorbed on Pd and then interacts with the intermediates (such as *CHO or *CHOOH) adsorbed favorably on neighboring Pt with the assistance of hydrogen bonding from the surface hydrogen of (Ni,Co)(OH).
View Article and Find Full Text PDFBrain Struct Funct
January 2025
Behavioral Neuroscience Laboratory, Department of Psychology, Boğaziçi University, Bebek, 34342, Istanbul, Turkey.
Theta oscillations of the mammalian amygdala are associated with processing, encoding and retrieval of aversive memories. In the hippocampus, the power of the network theta oscillation is modulated by basal forebrain (BF) GABAergic projections. Here, we combine anatomical and computational approaches to investigate if similar BF projections to the amygdaloid complex provide an analogous modulation of local network activity.
View Article and Find Full Text PDFPLoS Comput Biol
January 2025
Electrical and Computer Engineering Department, Concordia University, Montreal, Canada.
Astrocytes critically shape whole-brain structure and function by forming extensive gap junctional networks that intimately and actively interact with neurons. Despite their importance, existing computational models of whole-brain activity ignore the roles of astrocytes while primarily focusing on neurons. Addressing this oversight, we introduce a biophysical neural mass network model, designed to capture the dynamic interplay between astrocytes and neurons via glutamatergic and GABAergic transmission pathways.
View Article and Find Full Text PDFEur J Neurosci
January 2025
Université Grenoble Alpes, CNRS, LIPhy, Grenoble, France.
Staining brain slices with acetoxymethyl ester (AM) Ca dyes is a straightforward procedure to load multiple cells, and Fluo-4 is a commonly used high-affinity indicator due to its very large dynamic range. It has been shown that this dye preferentially stains glial cells, providing slow and large Ca transients, but it is questionable whether and at which temporal resolution it can also report Ca transients from neuronal cells. Here, by electrically stimulating mouse hippocampal slices, we resolved fast neuronal signals corresponding to 1%-3% maximal fluorescence changes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!