A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Automating cancer diagnosis using advanced deep learning techniques for multi-cancer image classification. | LitMetric

Cancer detection poses a significant challenge for researchers and clinical experts due to its status as the leading cause of global mortality. Early detection is crucial, but traditional cancer detection methods often rely on invasive procedures and time-consuming analyses, creating a demand for more efficient and accurate solutions. This paper addresses these challenges by utilizing automated cancer detection through AI-based techniques, specifically focusing on deep learning models. Convolutional Neural Networks (CNNs), including DenseNet121, DenseNet201, Xception, InceptionV3, MobileNetV2, NASNetLarge, NASNetMobile, InceptionResNetV2, VGG19, and ResNet152V2, are evaluated on image datasets for seven types of cancer: brain, oral, breast, kidney, Acute Lymphocytic Leukemia, lung and colon, and cervical cancer. Initially, images undergo segmentation techniques, proceeded by contour feature extraction where parameters such as perimeter, area, and epsilon are computed. The models are rigorously evaluated, with DenseNet121 achieving the highest validation accuracy as 99.94%, 0.0017 as loss, and the lowest Root Mean Square Error (RMSE) values as 0.036056 for training and 0.045826 for validation. These results revealed the capability of AI-based techniques in improving cancer detection accuracy, with DenseNet121 emerging as the most effective model in this study.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11499884PMC
http://dx.doi.org/10.1038/s41598-024-75876-2DOI Listing

Publication Analysis

Top Keywords

cancer detection
16
deep learning
8
ai-based techniques
8
cancer
6
detection
5
automating cancer
4
cancer diagnosis
4
diagnosis advanced
4
advanced deep
4
techniques
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!