AI Article Synopsis

  • - The study focuses on understanding broad-spectrum resistance in crops by analyzing how resistant and susceptible lines of Lens ervoides respond to different pathogens using gene co-expression networks.
  • - Researchers found seven gene networks shared similarities in resistance and susceptibility, which are linked to common plant defense processes, like cell wall synthesis and gene regulation.
  • - Additionally, eight distinct networks showed divergence, indicating that stronger co-expression of resistance genes and small RNAs in resistant plants boosts immunity, while certain metabolic processes in susceptible plants may increase vulnerability to pathogens.

Article Abstract

As field crops are likely to be challenged by multiple pathogens during their development, the investigation of broad-spectrum resistance in the host is of great interest for crop genetic enhancement. In this study, we attempted to address this question by adopting a weighed gene co-expression approach to study the temporal transcriptome dynamics of resistant and susceptible recombinant inbred lines (RILs) derived from an intraspecific Len ervoides cross during the infection process with either the necrotrophic pathogens Ascochyta lentis or Stemphylium botryosum, or the hemibiotrophic pathogen Colletotrichum lentis. By comparing networks of resistant and susceptible RILs, seven network module pairs were found to possess high correlation coefficients (R > 0.70) and large number of overlapping genes (n > 100). The conserved co-regulation of genes in these network module pairs were involved in plant cell wall synthesis, cell division, cytoskeleton organization, and protein ubiquitin related processes and appeared to be common disease responses against these pathogens. On the other hand, we also identified eight modules with low correlation between resistance and susceptibility networks. Among those, a stronger gene co-expression in R-genes and small RNA processes in the resistant hosts may be enhancing L. ervoides resistance against A. lentis, C. lentis, and S. botryosum, whereas the higher level of synergistic regulation in the synthesis of arginine and glutamine and phospholipid and glycerophospholipids in the susceptible hosts may contribute to increased susceptibility in L. ervoides.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11499849PMC
http://dx.doi.org/10.1038/s41598-024-76316-xDOI Listing

Publication Analysis

Top Keywords

gene co-expression
12
resistant susceptible
12
networks resistant
8
necrotrophic pathogens
8
network module
8
module pairs
8
gene
4
co-expression analysis
4
analysis reveals
4
reveals conserved
4

Similar Publications

Analysis and validation of serum biomarkers in brucellosis patients through proteomics and bioinformatics.

Front Cell Infect Microbiol

January 2025

Department of Clinical Laboratory Medicine Center, Inner Mongolia Autonomous Region People's Hospital, Hohhot, Inner Mongolia, China.

Introduction: This study aims to utilize proteomics, bioinformatics, and machine learning algorithms to identify diagnostic biomarkers in the serum of patients with acute and chronic brucellosis.

Methods: Proteomic analysis was conducted on serum samples from patients with acute and chronic brucellosis, as well as from healthy controls. Differential expression analysis was performed to identify proteins with altered expression, while Weighted Gene Co-expression Network Analysis (WGCNA) was applied to detect co-expression modules associated with clinical features of brucellosis.

View Article and Find Full Text PDF

Background: Unraveling the pathogenesis of colorectal cancer (CRC) can aid in developing prevention and treatment strategies. Aurora kinase A (AURKA) is a key participant in mitotic control and interacts with its co-activator, the targeting protein for Xklp2 (TPX2) microtubule nucleation factor. AURKA is associated with poor clinical outcomes and high risks of CRC recurrence.

View Article and Find Full Text PDF

Introduction: While most thyroid cancer patients have a favorable prognosis, anaplastic thyroid carcinoma (ATC) remains a particularly aggressive form with a median survival time of just five months. Conventional therapies offer limited benefits for this type of thyroid cancer. Our study aims to identify ATC patients who might bene t from immunotherapy.

View Article and Find Full Text PDF

Integrated transcriptomic analysis reveals dysregulated immune infiltration and pro-inflammatory cytokines in the secretory endometrium of recurrent implantation failure patients.

Life Med

October 2024

State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China.

Recurrent implantation failure (RIF) is a leading impediment to assisted reproductive technology, yet the underlying pathogenesis of RIF remains elusive. Recent studies have sought to uncover novel biomarkers and etiological factors of RIF by profiling transcriptomes of endometrial samples. Nonetheless, the inherent heterogeneity among published studies and a scarcity of experimental validations hinder the identification of robust markers of RIF.

View Article and Find Full Text PDF

Motivation: Bispecific antibodies (bsAbs) that bind to two distinct surface antigens on cancer cells are emerging as an appealing therapeutic strategy in cancer immunotherapy. However, considering the vast number of surface proteins, experimental identification of potential antigen pairs that are selectively expressed in cancer cells and not in normal cells is both costly and time-consuming. Recent studies have utilized large bulk RNA-seq databases to propose bispecific targets for various cancers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!