Polyethylene oxide (PEO) based electrolytes critically govern the security and energy density of solid-state batteries, but typically suffer from poor oxidation resistance at high voltages, which limits the energy density of batteries. Here, we report a Lewis-acid coordinated strategy to significantly improve the cyclic stability of 4.8 V-class PEO-based battery. The introduced Mg and Al with strong electron-withdrawing capability weaken the electron density of ether oxygen (EO) chains via chelation in the coordination structure, resulting in a locally limited interaction between the EO chains and the surface of cathodes at high state of charge. The batteries using Lewis-acid coordinated electrolytes and Ni-rich cathodes achieve high voltage stability of 4.8 V over 300 cycles. Further, the realization of industrial-scale electrolyte membranes, and Ah-level pouch cells over 586 Wh kg with good cyclic stability, suggests the potential of our strategy in practical applications of all-solid-state batteries.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11499912 | PMC |
http://dx.doi.org/10.1038/s41467-024-53094-8 | DOI Listing |
Angew Chem Int Ed Engl
January 2025
Western University, Chemistry, 1151 Richmond Street, N6A3K7, London, CANADA.
This work addresses fundamental questions that deepen our understanding of secondary coordination sphere effects on carbon dioxide (CO2) reduction using derivatized hydride analogues of the type, [Cp*Fe(diphosphine)H] (Cp* = C5Me5-) - a well-studied family of organometallic complex - as models. More precisely, we describe the general reactivity of [(Cp*-BR2)Fe(diphosphine)H], which contains an intramolecularly positioned Lewis acid, and its cooperative reactivity with CO2. Control experiments underscore the critical nature of borane incorporation for CO2 to reduced products, a reaction that does not occur for unfunctionalized [Cp*Fe(diphosphine)H]).
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
New York University, Chemistry, 29 Washington Place, RM 10001, 10003, New York, UNITED STATES OF AMERICA.
Herein, we report a Lewis acid-mediated ring expansion of donor-acceptor cyclopropanes (DACs) to substituted azetidines via nucleophilic nitrogen group transfer from readily accessible iminoiodinane. This protocol operates under mild, transition-metal-free conditions, and showcases excellent chemoselectivity, along with broad functional group tolerance. We report for the first time that challenging alkyl donor-acceptor cyclopropanes can undergo ring expansion leading to aliphatic azetidines without relying on external oxidants or precious transition-metal catalysts.
View Article and Find Full Text PDFNat Commun
January 2025
State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 130012, Changchun, P. R. China.
High-entropy metal-organic frameworks (HE-MOFs) hold promise as versatile materials, yet current rare examples are confined to low-valence elements in the fourth period, constraining their design and optimization for diverse applications. Here, a novel high-entropy, defect-rich and small-sized (32 nm) UiO-66 (ZrHfCeSnTi HE-UiO-66) has been synthesized for the first time, leveraging increased configurational entropy to achieve high tolerance to doping with diverse metal ions. The lattice distortion of HE-UiO-66 induces high exposure of metal nodes to create coordination unsaturated metal sites with a concentration of 322.
View Article and Find Full Text PDFFood Chem
December 2024
College of Food Science and Engineering, Ningxia University, Yinchuan, China. Electronic address:
This study presents a novel method for the efficient preparation of peptide-based films through microwave-assisted Lewis acid catalysis (MALC) of buckwheat globulin (BG). The MALC process efficiently degraded BG into small molecular peptides (1.6-1.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
College of Materials Science and Engineering, Hunan University, Changsha 410082, PR China.
High-voltage LiCoO is a promising cathode material for ultrahigh-energy lithium-ion batteries, particularly in the commercialization of 5G technology. However, achieving long-term operational stability remains a significant challenge. Herein, a quaterpolymer additive with multiple functional groups is introduced to enhance the electrochemical performance of LiCoO cathode at 4.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!