Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background And Purpose: To train and validate a deep learning (DL)-based segmentation model for cerebral microbleeds (CMB) on susceptibility-weighted MRI; and to find associations between CMB, cognitive impairment, and vascular risk factors.
Materials And Methods: Participants in this single-institution retrospective study underwent brain MRI to evaluate cognitive impairment between January-September 2023. For training the DL model, the nnU-Net framework was used without modifications. The DL model's performance was evaluated on independent internal and external validation datasets. Linear regression analysis was used to find associations between log-transformed CMB numbers, cognitive function (mini-mental status examination [MMSE]), white matter hyperintensity (WMH) burden, and clinical vascular risk factors (age, sex, hypertension, diabetes, lipid profiles, and body mass index).
Results: Training of the DL model (n = 287) resulted in a robust segmentation performance with an average dice score of 0.73 (95% CI, 0.67-0.79) in an internal validation set, (n = 67) and modest performance in an external validation set (dice score = 0.46, 95% CI, 0.33-0.59, n = 68). In a temporally independent clinical dataset (n = 448), older age, hypertension, and WMH burden were significantly associated with CMB numbers in all distributions (total, lobar, deep, and cerebellar; all <.01). MMSE was significantly associated with hyperlipidemia (β = 1.88, 95% CI, 0.96-2.81, <.001), WMH burden (β = -0.17 per 1% WMH burden, 95% CI, -0.27-0.08, P <.001), and total CMB number (β = -0.01 per 1 CMB, 95% CI, -0.02-0.001, = .04) after adjusting for age and sex.
Conclusions: The DL model showed a robust segmentation performance for CMB. In all distributions, CMB had significant positive associations with WMH burden. Increased WMH burden and CMB numbers were associated with decreased cognitive function.
Abbreviations: CMB = cerebral microbleed; DL = deep learning, DSC = dice similarity coefficient; MMSE = mini-mental status examination; SVD = small vessel disease; SWI = susceptibility-weighted image; WMH = white matter hyperintensity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3174/ajnr.A8552 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!