AI Article Synopsis

  • The study explored how the built environment, analyzed through satellite images, impacts the risk of major adverse cardiovascular events (MACE) among patients undergoing coronary artery calcium (CAC) scoring in Northern Ohio.
  • Researchers used a deep neural network to extract features from Google Satellite Imagery, revealing a significant association between a constructed GSI risk score and MACE risk, particularly in patients with low CAC scores.
  • However, when adjusting for social vulnerability factors, the strength of this association weakened, indicating that social determinants of health play a crucial role in cardiovascular risk assessments.

Article Abstract

Background: Built environment affects cardiovascular health, but comprehensive assessment in a scalable fashion, for population health and resource allocation, is constrained by limitations of current microscale measures.

Objectives: The purpose of this study was to investigate the association between satellite image-based environment and risk of major adverse cardiovascular events (MACE).

Methods: Using a pretrained deep neural network, features depicting the built environment from Google Satellite Imagery (GSI) around 64,230 patients in Northern Ohio undergoing coronary artery calcium (CAC) scoring were extracted. Elastic net regularized Cox proportional hazards models identified associations of GSI features with MACE risk (defined as myocardial infarction, stroke, heart failure, or death). A composite GSI risk score was constructed using features that demonstrated nonzero coefficients in the elastic net model. We assessed association of this score with MACE risk, after adjusting for CAC scores and the social vulnerability index (SVI). Its interactions with CAC scores were also examined in subgroups.

Results: Adjusting for CAC and traditional risk factors, the GSI risk score was significantly associated with higher MACE risk (HR: 2.67; 95% CI: 1.63-4.38; P < 0.001). However, adding SVI reduced this association to nonsignificance (HR: 1.54; 95% CI: 0.91-2.60; P = 0.11). Patients in the highest quartile (Q4) of GSI risk score had a 56% higher observed risk of MACE (HR: 1.56; 95% CI: 1.32-1.86; P < 0.005) compared with the lowest quartile (Q1). The GSI risk score had the strongest association with MACE risk in patients with CAC = 0. This association was attenuated, but remained significant, with higher CAC.

Conclusions: AI-enhanced satellite images of the built environment were linked to MACE risk, independently of traditional risk factors and CAC, but this was influenced by social determinants of health, represented by SVI. Satellite image-based assessment of the built environment may provide a rapid scalable integrative approach, warranting further exploration for enhanced risk prediction.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jacc.2024.08.053DOI Listing

Publication Analysis

Top Keywords

built environment
20
mace risk
20
gsi risk
16
risk score
16
risk
15
assessment built
8
satellite imagery
8
satellite image-based
8
elastic net
8
adjusting cac
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!