Municipal solid waste management (MSWM) in Ethiopia is a complex issue with institutional, social, political, environmental, and economic dimensions, impacting sustainable development. Effective MSWM planning necessitates understanding the generation rate and composition of waste. This systematic review synthesizes qualitative and quantitative data from various sources to aggregate current knowledge, identify gaps, and provide a comprehensive understanding of municipal solid waste management in Ethiopia. The findings reveal that the generation rate of municipal solid waste in Ethiopia is 0.38 kg/ca/day, with the waste composition being predominantly food waste, followed by ash, dust, and sand, and yard waste. Over 85% of this MSW is either reusable or recyclable, with a significant portion being organic matter (73.13% biodegradable) and 11.78% recyclable materials. Physicochemical analyses reveal that Ethiopian MSW is suitable for composting and biogas production, offering opportunities to reduce environmental pollution, and GHGs, support urban agriculture, and create job opportunities. However; challenges persist, including a lack of political will, weak municipal planning, limited community awareness, and inadequate waste management infrastructure, and only 31.8% of MSW is collected legally, leading to inefficient and harmful disposal practices. To improve MSWM, Ethiopia should focus on public awareness; increased funding, infrastructure investment, private sector partnerships, and implementing the 4 R principles (reduce, reuse, and recycle). An integrated approach involving government, industry, and civil society is essential. Further research on the physicochemical properties and strategic uses of MSW is needed to enhance management practices. The comprehensive study of municipal solid waste management (MSWM) in Ethiopia reveals the intricate interplay of institutional, social, political, environmental, and economic factors that influence the nation's sustainable development. The findings underscore the urgent need for tailored, integrated waste management strategies that are informed by a thorough understanding of MSW generation rates, composition, and current management practices. Ethiopia's lower per capita MSW generation compared to developed countries and the predominantly organic composition of its waste present significant opportunities for sustainable waste management practices such as composting and recycling. These practices can not only minimize the environmental impact but also support urban greening, agriculture, and renewable energy production. The high organic content, suitable physicochemical properties of MSW for composting, and potential for biogas and briquette production highlight pathways for creating employment, reducing waste, and enhancing soil fertility. Despite these opportunities, Ethiopia faces substantial challenges due to inadequate political will, weak municipal planning, limited community awareness, insufficient waste management infrastructure, and poor policy implementation. The high rate of illegal waste disposal further exacerbates environmental and health issues, emphasizing the need for a more effective and integrated MSWM approach. To address these challenges and harness the potential of MSW, Ethiopia must prioritize increasing public awareness; investing in infrastructure, fostering private sector partnerships, and implementing the principles of reduce, reuse, and recycle (3 R). Developing strategies that involve all stakeholders and turning waste into valuable resources is crucial. Government, industry, and civil society must collaborate to implement integrated MSWM systems that focus on waste reduction at the source, alternative material use, and advanced recycling technologies. Further research at both federal and regional levels is essential to optimize the physicochemical analysis and strategic use of MSW. Prompt action is required to transform waste management into a pillar of sustainable urban development, ultimately improving environmental quality and human health in Ethiopia.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/10962247.2024.2416588 | DOI Listing |
Anal Methods
January 2025
Jiangsu Beier Machinery Co. Ltd, Jiangsu, 215600, China.
Plastic waste management is one of the key issues in global environmental protection. Integrating spectroscopy acquisition devices with deep learning algorithms has emerged as an effective method for rapid plastic classification. However, the challenges in collecting plastic samples and spectroscopy data have resulted in a limited number of data samples and an incomplete comparison of relevant classification algorithms.
View Article and Find Full Text PDFHeliyon
July 2024
Department of Management Information Systems, Faculty of Data Science for Sustainable Growth, Jeju National University, Republic of Korea.
The escalating annual growth rate of electronic waste, commonly referred to as "e-waste," is currently between 3 % and 5 %, indicating a rapidly increasing solid waste stream. In 2019, South Korea generated 15.8 kg of e-waste per capita.
View Article and Find Full Text PDFHeliyon
July 2024
Department of Business Sciences - Management & Innovation Systems/DISA-MIS, University of Salerno, Italy.
This article aims to provide a systematic review of the literature on animal biomass and biogas plants through an analysis of externalities and benefits in economic, social, and environmental terms. In recent years, the spread of biogas plants has played an important role, especially in rural areas, generating benefits not only for the individual farm but for entire communities, contributing to the reduction of energy poverty and, at the same time, promoting the production of energy and organic manure. In light of the findings, the study argues that: (a) more public subsidies are needed; (b) the deployment of an appropriate policy mix would encourage the spread of small and medium-sized plants, with a reduction in road transport; and (c) targeted and diversified investments are needed on a geographic-by-geographic basis.
View Article and Find Full Text PDFWater Sci Technol
January 2025
School of Civil Engineering and Architecture, University of Jinan, Jinan 250022, China E-mail:
Ultrafiltration membranes are widely used in the treatment of surface water. However, membrane fouling is a core issue that needs to be addressed in its application. Magnetotactic bacteria (MTB) show early film-forming and magnetotactic behaviour in the presence of external magnetic fields.
View Article and Find Full Text PDFWater Sci Technol
January 2025
Institute for Smart City of Chongqing University in Liyang, Jiangsu 213300, China.
Contamination by heavy metals (HMs) in aquatic ecosystems is a worldwide issue. Therefore, a feasible solution is crucial for underdeveloped and developing countries. Waste-derived materials (WDMs) exhibit unique physical and chemical properties that promote diverse mechanisms for the removal of HMs in constructed wetlands (CWs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!