A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Biomimetic Nanozyme-Decorated Smart Hydrogel for Promoting Chronic Refractory Wound Healing. | LitMetric

Biomimetic Nanozyme-Decorated Smart Hydrogel for Promoting Chronic Refractory Wound Healing.

ACS Appl Mater Interfaces

College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P. R. China.

Published: November 2024

Chronic refractory wounds have become a serious threat to human health and are characterized by prolonged inflammation, recurrent bacterial infections, and elevated ROS levels. However, current therapeutic strategies usually target a unilateral healing function and are unable to tackle the complexity and sensitivity of chronic refractory wound healing. This study fabricated a biomimetic nanozyme based on rhein (Cu-rhein NSs), which effectively mimics the activity of superoxide dismutase (SOD) for scavenging various free radicals. Additionally, zinc oxide microspheres (ZnO MSs) were prepared to enhance the antibacterial activity and mechanical properties of the modified hydrogel. Cu-rhein NSs and ZnO MSs were comodified onto an extracellular matrix-mimetic dual-network smart hydrogel constructed from oxidized sodium alginate, gelatin, and borax via dynamic borate and Schiff base bonds. The smart hydrogel presented the good biocompatibility and targeted the unique acidic microenvironment with high oxidative stress of chronic refractory wounds, intelligently releasing bionic nanozymes to effectively eliminate bacteria, reduce inflammatory responses, and scavenge multiple free radicals for reducing ROS. In vivo experiments on the rat model based on diabetic infection showed that the smart hydrogel could effectively eliminate bacteria, promote vascular regeneration and collagen deposition, reduce inflammatory response, and accelerate the healing of diabetic-infected wounds (almost complete healing within 14 days). The advantages of an intelligent, biomimetic tissue regeneration cascade management strategy against diabetic infected wound healing are highlighted.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.4c13220DOI Listing

Publication Analysis

Top Keywords

smart hydrogel
16
chronic refractory
16
wound healing
12
refractory wound
8
refractory wounds
8
cu-rhein nss
8
free radicals
8
zno mss
8
effectively eliminate
8
eliminate bacteria
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!