Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We assess the validity of a range of models of glass formation based on molecular dynamics simulation results of the Kob-Andersen (KA) model system under a wide range of constant volume and constant pressure conditions. These models include the Adam-Gibbs model emphasizing configurational entropy, the string model emphasizing collective particle exchange motion, the shoving model emphasizing material elasticity, the localization model emphasizing dynamical free volume, and parabolic models based on the ideas of dynamic facilitation and, alternatively, the hypothesis that glass formation involves an avoided critical point. We demonstrate that these seemingly disparate models all provide a reasonable description of structural relaxation and diffusion data for the KA model system under all simulation conditions considered. Hence, the present study points to some unity in our understanding of the relationship between leading models of glass formation, supporting inferences drawn from previous studies of polymeric glass-forming liquids.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpcb.4c04806 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!