A novel fluorometric method is presented for accurately quantifying peroxiredoxin (Prx) enzyme activity in vitro. The rate-limiting step in the Prx-catalyzed reaction is the dissociation of peroxide. To avoid interference from catalase, we developed an assay using tert-butyl hydroperoxide (t-BOOH) as a substrate for specific Prx activity measurement. The assay involves incubating the enzyme substrates 1,4-dithio-DL-threitol (DTT) and t-BOOH in a suitable buffer at 37 °C for 10 min in a known volume of Prx enzyme. Following incubation, the reagent monobromobimane (mBB) is added to terminate the enzymatic reaction and produce a fluorescent product. Prx activity is subsequently determined by measuring thiol fluorescence, with reaction conditions optimized using a Bland-Altman plot. The efficacy of this novel protocol was rigorously validated by comparing Prx activity measurements from paired samples with those generated by a reference assay. A correlation coefficient of 0.995 was observed between the two methods, demonstrating superior precision and reliability compared to existing methods. The mBB-Prx protocol offers a significant safety advantage by using t-BOOH as a substrate for Prx activity measurement. As catalase does not catalyze t-BOOH dissociation, including sodium azide is unnecessary. Moreover, the method obviates the need for concentrated acids to terminate the Prx enzymatic reaction, as the mBB reagent efficiently inhibits Prx activity. This streamlined approach simplifies the assay and significantly improves its safety and usability, providing users with a reliable and convenient tool. The convenience of this method allows users to focus on their research without worrying about safety or complex procedures.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10895-024-03991-4DOI Listing

Publication Analysis

Top Keywords

prx activity
20
enzyme activity
8
prx
8
prx enzyme
8
t-booh substrate
8
activity measurement
8
enzymatic reaction
8
activity
7
fluorescent method
4
method measuring
4

Similar Publications

The Trx-Prx redox pathway and PGR5/PGRL1-dependent cyclic electron transfer play key regulatory roles in poplar drought stress.

Tree Physiol

January 2025

Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China.

Understanding drought resistance mechanisms is crucial for breeding poplar species suited to arid and semi-arid regions. This study explored the drought responses of three newly developed 'Zhongxiong' series poplars using integrated transcriptomic and physiological analyses. Under drought stress, poplar leaves showed significant changes in differentially expressed genes (DEGs) linked to photosynthesis-related pathways, including photosynthesis-antenna proteins and carbon fixation, indicating impaired photosynthetic function and carbon assimilation.

View Article and Find Full Text PDF

Background And Objectives: It remains a challenge to monitor cerebrovascular autoregulation (CA) reliably and dynamically in an intensive care unit. The objective was to build a proof-of-concept active CA model exploiting advances in representation learning and the full complexity of the arterial blood pressure (ABP) and intracranial pressure (ICP) signal and outperform the pressure reactivity index (PRx).

Methods: A porcine cranial window CA data set (n = 20) was used.

View Article and Find Full Text PDF

Genome-wide analysis of Class III peroxidase (PRX) family core genes and functional mechanism of GhPRXR1-A for seed development in Gossypium hirsutum.

Int J Biol Macromol

January 2025

State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China. Electronic address:

Class III peroxidases (PRXs) play critical roles in plant growth and development by oxidizing various substrates with HO. Although many PRXs have been identified and their roles in biotic and abiotic stress responses have extensively investigated in plants. However, functional mechanisms of PRXs in seed development remain poorly understood.

View Article and Find Full Text PDF

Patients With .

J Neurotrauma

December 2024

Department of Medical Sciences, Section of Neurosurgery, Uppsala University, Uppsala, Sweden.

This study compared the roles of extraparenchymal autonomic nervous system (ANS) control of cerebral blood flow (CBF) versus intraparenchymal cerebrovascular autoregulation in 487 patients with aneurysmal subarachnoid hemorrhage (SAH) and 413 patients with traumatic brain injury (TBI). Vasomotion intensity of extraparenchymal and intraparenchymal vessels were quantified as the amplitude of oscillations of arterial blood pressure (ABP) and intracranial pressure (ICP) in the very low frequency range of 0.02-0.

View Article and Find Full Text PDF

Guilu Erxian Jiao remodels dendritic spine morphology through activation of the hippocampal TRPC6-CaMKIV-CREB signaling pathway and suppresses fear memory generalization in rats with post-traumatic stress disorder.

J Ethnopharmacol

December 2024

Integrative Medicine Research Center, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Outer Ring East Road No. 232, Higher Education Mega Center, Guangzhou, 510006, China. Electronic address:

Ethnopharmacological Relevance: Guilu Erxian Jiao (GLEXJ) is a renowned traditional Chinese herbal formula used to tonify the kidney. It is employed to treat psychiatric disorders, and alleviate memory impairment, cognitive dysfunction, and behavioral disorders. Modern pharmacological studies have demonstrated GLEXJ's ability to significantly inhibit the fear response in post-traumatic stress disorder (PTSD) and facilitate the extinction of fear memory.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!