Metabolic effects of medium-chain triacylglycerol consumption are preserved in obesity.

Am J Physiol Endocrinol Metab

The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Denmark.

Published: January 2025

Several health-beneficial effects are associated with intake of medium-chain triacylglycerol (MCT); however, the underlying mechanisms are unknown. Furthermore, it remains uncertain whether the acute metabolic effects of MCT differ between lean individuals and individuals with obesity-and whether these effects are sustained following chronic intake. This study aimed to elucidate the postprandial physiological and metabolic effects of MCT before and after 8 days intake compared with intake of energy-matched triacylglycerol consisting of long-chain fatty acids (long-chain triacylglycerols, LCT) using a randomized cross-over design in lean individuals ( = 8) and individuals with obesity ( = 8). The study revealed that consumption of MCT increased ketogenesis and metabolic rate while lowering blood glucose levels over 5 h. The hypoglycemic action of MCT intake was accompanied by a concomitant transient increase in plasma insulin and glucagon levels. Interestingly, the effects on ketogenesis, metabolic rate, and glycemia were preserved in individuals with obesity and sustained after 8 days of daily supplementation. Lipidomic plasma analysis in lean individuals ( = 4) showed that a part of the ingested MCT bypasses the liver and enters the systemic circulation as medium-chain fatty acids (MCFAs). The findings suggest that MCFAs, along with ketone bodies from the liver, may act as signaling molecules and/or substrates in the peripheral tissues, thereby contributing to the effects of MCT intake. In summary, these findings underscore the health benefits of MCT in metabolically compromised individuals after daily supplementation. Moreover, we uncover novel aspects of MCFA biology, providing insights into how these fatty acids orchestrate physiological effects in humans. We reveal that medium-chain triacylglycerol (MCT) intake increases postprandial ketogenesis and metabolic rate and reduces plasma glucose levels in humans. Notably, these responses persist in individuals with obesity and are maintained following chronic MCT supplementation. Some medium-chain fatty acids entered the circulation, suggesting that these, together with ketone bodies, act as signaling molecules/substrates in peripheral tissues. The findings highlight health beneficial effects of dietary MCT in individuals with obesity and reveal new insights into lipid biology.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpendo.00234.2024DOI Listing

Publication Analysis

Top Keywords

fatty acids
16
individuals obesity
16
metabolic effects
12
medium-chain triacylglycerol
12
effects mct
12
lean individuals
12
ketogenesis metabolic
12
metabolic rate
12
mct intake
12
mct
11

Similar Publications

is a dominant member of the human gut microbiome and produces short-chain fatty acids (SCFAs). These promote immune system function and inhibit inflammation, making this microbe important for human health. Lactate is a primary source of gut SCFAs but its utilization by has not been explored.

View Article and Find Full Text PDF

Modern treatment, a healthy diet, and physical activity routines lower the risk factors for metabolic syndrome; however, this condition is associated with all-cause and cardiovascular mortality worldwide. This investigation involved a randomized controlled trial, double-blind, parallel study. Fifty-eight participants with risk factors of metabolic syndrome according to the inclusion criteria were randomized into two groups and given probiotics (Lacticaseibacillus paracasei MSMC39-1 and Bifidobacterium animalis TA-1) (n = 31) or a placebo (n = 27).

View Article and Find Full Text PDF

Neuronal TRPV1-CGRP axis regulates peripheral nerve regeneration through ERK/HIF-1 signaling pathway.

J Neurochem

January 2025

State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.

Severe trauma frequently leads to nerve damage. Peripheral nerves possess a degree of regenerative ability, and actively promoting their recovery can help restore the sensory and functional capacities of tissues. The neuropeptide calcitonin gene-related peptide (CGRP) is believed to regulate the repair of injured peripheral nerves, with neuronal transient receptor potential vanilloid type 1 (TRPV1) potentially serving as a crucial upstream factor.

View Article and Find Full Text PDF

Background: Peri-implantitis is characterized as a pathological change in the tissues around dental implants. Fourier-transform infrared spectroscopy (FTIR) provides molecular information from optical phenomena observed by the vibration of molecules, which is used in biological studies to characterize changes and serves as a form of diagnosis.

Aims: this case-control study evaluated the peri-implant disease by using FTIR spectroscopy with attenuated total reflectance in the fingerprint region.

View Article and Find Full Text PDF

sp. nov., a bacterium isolated from the roots of the aquatic plant .

Int J Syst Evol Microbiol

January 2025

Department of Biology, Slippery Rock University, Slippery Rock, Pennsylvania, 16057, USA.

A polyphasic taxonomic study was carried out on strain T5W1, isolated from the roots of the aquatic plant . This isolate is Gram-negative, rod-shaped, motile, aerobic and non-pigmented. Nearly complete 16S rRNA gene sequence homology related the strain to , with 98.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!