Atomic force microscopy was utilized to estimate the adhesion strengths to silicon nitride as well as the cellular elasticities of pathogenic Listeria monocytogenes EGDe cells cultured in media adjusted to five different pH conditions of growth (5, 6, 7, 8, and 9) under water with 0.0027 fixed ionic strength. Particularly, the role of adhesion on the bacterial elastic properties was investigated. The nonadhesive Hertz model of contact mechanics was used to extract Young's moduli of elasticity of bacterial cells from the approach force-indentation data. Additionally, the adhesive models of contact mechanics: Johnson-Kendall-Roberts (JKR) and Derjaguin-Muller-Toporov (DMT) were used to estimate Young's moduli of elasticity of bacterial cells from the retraction force-indentation data. Our results indicated that adhesion to silicon nitride was the highest for cells cultured at a pH of 7. Similarly, bacterial cells cultured at pH 7 were characterized by the highest Young's moduli of elasticities compared to the lower or higher pH conditions of growth. Young's moduli of elasticities estimated from the Hertz model were stiffer than those estimated using JKR or DMT models. As the adhesion between bacterial cells and indenters increased, the difference between the Hertz model and JKR or DMT models estimates of Young's moduli of elasticity increased as well. Contradicting the current norm of using the Hertz model to quantify bacterial elasticity in the literature, our results highlight the extreme importance of utilizing contact mechanics models with adhesion components in them such as the JKR and DMT models to estimate bacterial elasticity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11501791 | PMC |
http://dx.doi.org/10.1116/6.0003840 | DOI Listing |
Stem cells adapt to their local mechanical environment by rearranging their cytoskeleton, which underpins the evolution of their shape and fate as well as the emergence of tissue structure and function. Here, in the second part of a two-part experimental series, we aimed to elucidate spatiotemporal cytoskeletal remodeling and resulting changes in morphology and mechanical properties of cells and their nuclei. Akin to mechanical testing of the most basic living and adapting unit of life, i.
View Article and Find Full Text PDFBiomater Sci
January 2025
National Research Centre "Kurchatov Institute", 123182, Akademika Kurchatova Sq. 1, Moscow, Russia.
Photocrosslinkable hydrogels based on hyaluronic acid are promising biomaterials high in demand in tissue engineering. Typically, hydrogels are photocured under the action of UV or blue light strongly absorbed by biotissues, which limits prototyping under living organism conditions. To overcome this limitation, we propose the derivatives of well-known photosensitizers, namely chlorin , chlorin and phthalocyanine, as those for radical polymerization in the transparency window of biotissues.
View Article and Find Full Text PDFBioengineering (Basel)
December 2024
Department of Oral and Maxillofacial Surgery, University Hospital Tübingen, 72076 Tübingen, Germany.
Cell functionality, driven by remarkable plasticity, is strongly influenced by mechanical forces that regulate mesenchymal stem cell (MSC) fate. This study explores the biomechanical properties of jaw periosteal cells (JPCs) and induced mesenchymal stem cells (iMSCs) under different culture conditions. We cultured both JPCs and iMSCs (n = 3) under normoxic and hypoxic environments, with and without osteogenic differentiation, and on laminin- or gelatin-coated substrates.
View Article and Find Full Text PDFTissue Eng Part A
January 2025
Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA.
The synovium is a loose connective tissue that separates the intra-articular (IA) joint compartments of all diarthrodial joints from the systemic circulation. It can be divided into two layers: the intima, a thin and cell-dense layer atop a more heterogeneous subintima, composed of collagen and various cell types. The subintima contains penetrating capillaries and lymphatic vessels that rapidly clear injected drugs from the joint space which may vary not only with drug size and charge but also with the microstructure and composition of the intima and subintima of the synovium.
View Article and Find Full Text PDFHyperelastic materials are extensively incorporated in medical implants and microelectromechanical systems due to their large, elastic, recoverable strains. However, their mechanical properties are sensitive to processing parameters that may lead to inconsistent characterization. Various test setups have been employed for characterizing hyperelastic materials; however, they are often costly.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!