AI Article Synopsis

  • - The study explores one-dimensional junctions formed by closely arranged silver nanowires, which are called 1D hotspots (HSs), known for their significant electromagnetic enhancement due to localized and surface plasmon resonances.
  • - Two-photon excited emissions (like hyper-Rayleigh and hyper-Raman) occur at the edges of these 1D HSs when stimulated by continuous-wave near-infrared laser light, but not from the centers, due to a much larger enhancement factor at the edges.
  • - Numerical calculations reveal that the high enhancement factor at the edges is linked to the lowest surface plasmon mode, which is tightly compressed and localized there, enabling the observed emissions to propagate through the 1D HSs. *

Article Abstract

One-dimensional junctions between parallelly and closely arranged multiple silver nanowires (NWs) exhibit a large electromagnetic (EM) enhancement factor (FR) owing to both localized and surface plasmon resonances. Such junctions are referred to as one-dimensional (1D) hotspots (HSs). This study found that two-photon excited emissions, such as hyper-Rayleigh, hyper-Raman, and two-photon fluorescence of dye molecules, are generated at the edge of 1D HSs of NW dimers with continuous-wave near-infrared (NIR) laser excitation and propagated through 1D HSs; however, they were not generated from the centers of 1D HSs. Numerical EM calculations showed that FR of the NIR region for the edges of 1D HSs was larger than that for the centers by ∼102 times, resulting in the observation of two-photon excited emissions only from the edge of 1D HSs. The analysis of the NW dimer gap distance dependence of FR revealed that the lowest surface plasmon (SP) mode, compressed and localized at the edges of 1D HSs, was the origin of the large FR in the NIR region. The propagation of two-photon-excited emissions was supported by the higher-order coupled SP mode.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0220026DOI Listing

Publication Analysis

Top Keywords

laser excitation
8
surface plasmon
8
two-photon excited
8
excited emissions
8
edge hss
8
nir region
8
edges hss
8
hss
7
plasmon-enhanced photon
4
photon excited
4

Similar Publications

Phasor-FSTM: a new paradigm for multicolor super-resolution imaging of living cells based on fluorescence modulation and lifetime multiplexing.

Light Sci Appl

January 2025

Center for Biomedical Optics and Photonics & College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen, 518060, China.

Multicolor microscopy and super-resolution optical microscopy are two widely used techniques that greatly enhance the ability to distinguish and resolve structures in cellular imaging. These methods have individually transformed cellular imaging by allowing detailed visualization of cellular and subcellular structures, as well as organelle interactions. However, integrating multicolor and super-resolution microscopy into a single method remains challenging due to issues like spectral overlap, crosstalk, photobleaching, phototoxicity, and technical complexity.

View Article and Find Full Text PDF

Efficient and Robust Europium(III)-Based Hybrid Lanthanide Scintillators for Advanced X-ray Imaging.

Angew Chem Int Ed Engl

January 2025

South China Normal University, Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Material, School of Physics and Telecommunication Engineering, Panyu University Mega Center, 510006, Guangzhou, CHINA.

Scintillators that convert ionizing radiation into low-energy photons are essential for medical diagnostics and industrial inspections. Despite advances in X-ray scintillators, challenges remain in achieving high efficiency, environmental compatibility, stability, and flexibility. Here, we present experimental investigations of a new type of europium(III)-based hybrid ternary complex scintillators for improved X-ray detection and imaging.

View Article and Find Full Text PDF

Carbon fiber reinforced polymers (CFRPs) are widely used in fields such as aviation and aerospace. However, subtle defects can significantly impact the material's service life, making defect detection a critical priority. In this paper, delamination defects in CFRP are detected using line laser infrared thermography, and a defect characterization algorithm that combines differential thermography with a frequency-domain filter is proposed.

View Article and Find Full Text PDF

Full-color dynamic volumetric displays with tunable upconversion emission from RE-doped glasses (RE = Ho, Tm, Nd, Yb) under NIR laser excitation.

Light Sci Appl

January 2025

Yildiz Technical University, Faculty of Chemical and Metallurgical Engineering, Department of Metallurgical and Materials Engineering, Glass Research and Development Laboratory, Istanbul, 34220, Türkiye.

Three-dimensional (3D) imaging technology holds immense potential across various high-tech applications; however, current display technologies are hindered by limitations such as restricted viewing angles, cumbersome headgear, and limited multi-user accessibility. To address these challenges, researchers are actively exploring new materials and techniques for 3D imaging. Laser-based volumetric displays (VDs) offer a promising solution; nonetheless, existing screen materials fall short in meeting key requirements for long-term durability, full-color operation, and scalability.

View Article and Find Full Text PDF

Giant Photogalvanic Effect-Induced Terahertz Wave Emission in Wafer-Scale Type-II Dirac Semimetal PtTe.

ACS Appl Mater Interfaces

January 2025

State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China.

Terahertz (THz) emission arising from the second-order nonlinear photocurrent effects in two-dimensional quantum materials has attracted significant attention due to its high efficiency and ease of polarization manipulation. However, in centrosymmetric quantum materials, the terahertz emission is typically suppressed, caused by the directional symmetry of the photocurrent generated under femtosecond laser excitation. In this work, we report that wafer-scale type-II Dirac semimetal PtTe with lattice centrosymmetry exhibits remarkably high THz emission efficiency (2 orders of magnitude greater than that of a ZnTe nonlinear crystal with equivalent thickness) and pronounced polarization sensitivity at room temperature.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!