The chiral recognition and separation of enantiomers are of great importance for biological research and the pharmaceutical industry. Preparing homochiral materials with adjustable size and chiral binding sites is beneficial for achieving an efficient chiral recognition performance. Here, a homochiral covalent organic framework membrane modified with β-cyclodextrin (CD-COF) was constructed, which was subsequently utilized as an electrochemical sensor for the enantioselective sensing of tryptophan (Trp) molecules. The preferential adsorption of l-Trp over d-Trp at the β-CD sites can enhance the surface charge density and hydrophilicity of the CD-COF membrane, resulting in an increased transmembrane ionic current. Trp enantiomers with concentrations down to 0.28 nM can be effectively discriminated. The l-/d-Trp recognition selectivity increases with the Trp concentration and reaches a value of 19.2 at 1 mM. The selective adsorption of l-Trp to the CD-COF membrane will also hinder its transport, resulting in a l-/d-Trp permeation selectivity of 15.3. This study offers a new strategy to construct homochiral porous membranes and achieve efficient chiral sensing and separation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.analchem.4c03716 | DOI Listing |
Org Chem Front
December 2024
Departamento de Química Orgánica I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid Av. Complutense S/N 28040 Madrid Spain
Supramolecular chemistry of carbon-based materials provides a variety of chemical structures with potential applications in materials science and biomedicine. Here, we explore the supramolecular complexation of fullerenes C and C, highlighting the ability of molecular nanographene tweezers to capture these structures. The binding constant for the CNG-1⊃C complex was significantly higher than for CNG-1⊃C, showing a clear selectivity for the more π-extended C.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
Exploiting novel noncovalent interactions for catalysis design represents a fascinating direction. For the flexible and relatively weak anion-π interactions, manipulation of two or more π-acidic surfaces for cooperative activation is highly desirable. Here, we demonstrate the strategy of cooperative anion-π catalysis based on chiral molecular cages with V-shaped electron-deficient cavities for synergic binding and activation of dicarbonyl electrophiles toward highly enantioselective desymmetrization transformation.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Okayama Daigaku Daigakuin Shizen Kagaku Kenkyuka, Division of Applied Chemistry, JAPAN.
Intramolecular aromatic oxidative coupling of 3,6-bis(m-terphenyl-2'-yl)carbazole provided a bis(m-terphenyl)-fused carbazole, while that of 3,6-bis(m-terphenyl-2'-yl)-1,8-diphenylcarbazole afforded a bis(quaterphenyl)-fused carbazole. Borylation of the latter furnished a B,N-embedded helical nanographene binding a fluoride anion via a structural change from the three-coordinate boron to the four-coordinate boron. The anionic charge derived from the fluoride anion is stabilized over the expanded p-framework, which leads to the high binding constant (Ka) of 1 × 105 M-1.
View Article and Find Full Text PDFNano Lett
January 2025
School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China.
Pnictogen bond (PnB) occurring on the group-15 elements is recognized as σ- or π-hole-based interaction that has garnered attention in the fields of anion recognition and organocatalysis. Due to the polyvalent feature of pnictogens and high directionality, PnB possesses potential in the design of convergent coassembled materials with acceptors containing lone pair electrons or anions, which however is rarely explored so far. Herein, we unveil the role of antimony (Sb)-based PnB donors in producing self-assembled chiroptical materials with lone pair electron containing acceptors.
View Article and Find Full Text PDFOrg Lett
January 2025
Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States.
Highly fluorinated naphthyl aldehyde and binaphthyl aldehyde ()- were designed and synthesized for fluorous-phase-based sensing. Greatly enhanced sensitivity and chemoselectivity in going from to ()- in the fluorescent detection of cysteine has been discovered. This is attributed to the increased structural rigidity of the axially chiral binaphthyl unit in ()- upon reaction with cysteine to form the corresponding thiazolidine product.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!