A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

How do high phosphate concentrations affect soil microbial communities after a century of ecosystem self-reclamation? | LitMetric

AI Article Synopsis

  • * Analyzing samples from a self-restored ecosystem, the research finds that bacterial communities mainly consist of Actinobacteria and Proteobacteria, while Ascomycota and Basidiomycota dominate the fungal community.
  • * Despite distinct differences in microbial diversity between soil and root environments, RP inputs do not significantly alter these communities; however, certain bacteria associated with RP-enriched soils have been identified, indicating pathways for developing microbial-based solutions for sustainable agriculture.

Article Abstract

The use of rock phosphate (RP) instead of soluble phosphate fertilizers is preferred for the development of more sustainable agriculture. However, the impact of high concentrations in RP on bacterial and fungal communities remains poorly documented. Thus, next-generation sequencing was used to characterize bacterial and fungal communities in the soils and roots of four plant species growing naturally in a self-restored ecosystem, on former open-pit phosphate mines where past exploitation generated locally a substantial phosphate enrichment of the soil. Our results show that bacterial communities are dominated by Actinobacteria and Proteobacteria phyla, while the Ascomycota and Basidiomycota phyla predominate in the fungal community. The alpha and beta diversities of both bacterial and fungal communities differ significantly between the root and soil compartments but are not significantly affected by RP inputs. However, Amplicon Sequence Variants (ASVs) indicative of RP-enriched soils have been identified; among them are bacteria representative of Streptomyces, Bacillus, Mycobacterium or Agromyces. Implications of these results open new ways of reflection to understand the microbial response following RP-inputs and long-term soil restoration, as well as to formulate microbial-based bioinoculants for sustainable agriculture applications based on microorganisms better adapted to high concentrations of RP.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11497093PMC
http://dx.doi.org/10.1111/1758-2229.70003DOI Listing

Publication Analysis

Top Keywords

bacterial fungal
12
fungal communities
12
sustainable agriculture
8
high concentrations
8
communities
5
high phosphate
4
phosphate concentrations
4
concentrations affect
4
soil
4
affect soil
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!