A deep-learning-based histopathology classifier for focal cortical dysplasia (FCD) unravels a complex scenario of comorbid FCD subtypes.

Epilepsia

Department of Neuropathology, University Hospital Erlangen, member of EpiCare European Reference Network, Erlangen, Germany.

Published: December 2024

Objective: Recently, we developed a first artificial intelligence (AI)-based digital pathology classifier for focal cortical dysplasia (FCD) as defined by the ILAE classification. Herein, we tested the usefulness of the classifier in a retrospective histopathology workup scenario.

Methods: Eighty-six new cases with histopathologically confirmed FCD ILAE type Ia (FCDIa), FCDIIa, FCDIIb, mild malformation of cortical development with oligodendroglial hyperplasia in epilepsy (MOGHE), or mild malformations of cortical development were selected, 20 of which had confirmed gene mosaicism.

Results: The classifier always recognized the correct histopathology diagnosis in four or more 1000 × 1000-μm digital tiles in all cases. Furthermore, the final diagnosis overlapped with the largest batch of tiles assigned by the algorithm to one diagnostic entity in 80.2% of all cases. However, 86.2% of all cases revealed more than one diagnostic category. As an example, FCDIIb was identified in all of the 23 patients with histopathologically assigned FCDIIb, whereas the classifier correctly recognized FCDIIa tiles in 19 of these cases (83%), that is, dysmorphic neurons but no balloon cells. In contrast, the classifier misdiagnosed FCDIIb tiles in seven of 23 cases histopathologically assigned to FCDIIa (33%). This mandates a second look by the signing histopathologist to either confirm balloon cells or differentiate from reactive astrocytes. The algorithm also recognized coexisting architectural dysplasia, for example, vertically oriented microcolumns as in FCDIa, in 22% of cases classified as FCDII and in 62% of cases with MOGHE. Microscopic review confirmed microcolumns in the majority of tiles, suggesting that vertically oriented architectural abnormalities are more common than previously anticipated.

Significance: An AI-based diagnostic classifier will become a helpful tool in our future histopathology laboratory, in particular when large anatomical resections from epilepsy surgery require extensive resources. We also provide an open access web application allowing the histopathologist to virtually review digital tiles obtained from epilepsy surgery to corroborate their final diagnosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11647433PMC
http://dx.doi.org/10.1111/epi.18161DOI Listing

Publication Analysis

Top Keywords

tiles cases
12
classifier focal
8
focal cortical
8
cortical dysplasia
8
dysplasia fcd
8
cases
8
cases histopathologically
8
cortical development
8
digital tiles
8
final diagnosis
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!