The human immune system plays a crucial role in defending the body against various infections, viruses, and external substances, contributing to overall well-being. However, an imbalance in the immune system can lead to increased susceptibility to infections, impacting overall health. Preclinical investigations suggest the potential application of L. and seed complex extract (PPCE) as a potent biological response modifier in terms of immunity. However, the safety and efficacy of PPCE in boosting immune function have not been investigated clinically. The present study aims to evaluate the safety and efficacy of PPCE on the immune system in healthy adults. An 8-week randomized, double-blinded, placebo-controlled cross-over clinical trial was adopted for the study. Study participants were administered either 1080 mg day of a PPCE supplement or a placebo. The study assessed the Natural Killer (NK) cell activity as the primary outcome measure. Serum concentrations of cytokines (IL-6, IL-12, IFN-γ, TNF-α) and a questionnaire-based assessment of upper airway infection were the secondary outcomes. At the end of the 8 weeks, NK cell activity significantly improved in the PPCE group compared to the placebo group ( < 0.05). Similarly, the concentrations of IFN-γ and IL-12 significantly increased ( < 0.05). However, there were no significant differences between the two groups in the cytokines IL-6 and TNF-α. Additionally, no adverse effects were observed during the trial. These findings suggest that PPCE supplementation is safe and potentially benefits immune stimulation by enhancing NK cell activity and inducing the production of Th-1 type cell-stimulating cytokines like IL-12 in healthy individuals.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d4fo03361b | DOI Listing |
Arch Immunol Ther Exp (Warsz)
January 2025
Department of Human Physiology, Medical University of Lublin, Lublin, Poland.
Systemic lupus erythematosus (SLE) is an autoimmune disease whose pathogenesis is not fully understood to date. One of the suggested mechanisms for its development is NETosis, which involves the release of a specific network consisting of chromatin, proteins, and enzymes from neutrophils, stimulating the immune system. One of its markers is citrullinated histone H3 (H3Cit).
View Article and Find Full Text PDFAnnu Rev Immunol
January 2025
2Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden; email:
The mucosal surfaces of the body are the most vulnerable points for infection because they are lined by single or multiple layers of very active epithelial cells. The main protector of these cells is the mucus system generated by the specialized goblet cells secreting its main components, the gel-forming mucins. The organization of the mucus varies from an attached mucus that is impenetrable to bacteria in the large intestine to a nonattached, more penetrable mucus in the small intestine and airways.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
University of Chicago Division of the Physical Sciences, chemistry, UNITED STATES OF AMERICA.
Immune checkpoint blockade (ICB) has revolutionized the treatment of many cancers by leveraging the immune system to combat malignancies. However, its efficacy is limited by the immunosuppressive tumor microenvironment and other regulatory mechanisms of the immune system. Innate immune modulators (IIMs) provide potent immune activation to complement adaptive immune responses and help overcome resistance to ICB.
View Article and Find Full Text PDFSci Immunol
January 2025
Department of Pathology and Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
The NLRP3 inflammasome plays a critical role in innate immunity and inflammatory diseases. NIMA-related kinase 7 (NEK7) is essential for inflammasome activation, and its interaction with NLRP3 is enhanced by K efflux. However, the mechanism by which K efflux promotes this interaction remains unknown.
View Article and Find Full Text PDFSci Immunol
January 2025
Department of Immunology and Microbiology, Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, USA.
A cell engineering approach demonstrates that precise regulation of cell signaling can be achieved using both endogenous and synthetic ligands.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!