A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Applying survey weights to ordinal regression models for improved inference in outcome-dependent samples with ordinal outcomes. | LitMetric

Researchers often use outcome-dependent sampling to study the exposure-outcome association. The case-control study is a widely used example of outcome-dependent sampling when the outcome is binary. When the outcome is ordinal, standard ordinal regression models generally produce biased coefficients when the sampling fractions depend on the values of the outcome variable. To address this problem, we studied the performance of survey-weighted ordinal regression models with weights inversely proportional to the sampling fractions. Through an extensive simulation study, we compared the performance of four ordinal regression models (SM: stereotype model; AC: adjacent-category logit model; CR: continuation-ratio logit model; and CM: cumulative logit model), with and without sampling weights under outcome-dependent sampling. We observed that when using weights, all four models produced estimates with negligible bias of all regression coefficients. Without weights, only stereotype model and adjacent-category logit model produced estimates with negligible to low bias for all coefficients except for the intercepts in all scenarios. In one scenario, the unweighted continuation-ratio logit model also produced estimates with low bias. The weighted stereotype model and adjacent-category logit model also produced estimates with lower relative root mean square errors compared to the unweighted models in most scenarios. In some of the scenarios with unevenly distributed categories, the weighted continuation-ratio logit model and cumulative logit model produced estimates with lower relative root mean square errors compared to the respective unweighted models. We used a study of knee osteoarthritis as an example.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11577697PMC
http://dx.doi.org/10.1177/09622802241282091DOI Listing

Publication Analysis

Top Keywords

logit model
32
produced estimates
20
ordinal regression
16
regression models
16
model produced
16
outcome-dependent sampling
12
stereotype model
12
model adjacent-category
12
adjacent-category logit
12
continuation-ratio logit
12

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!