This work presents an innovative all-electrical platform for selective single-particle manipulation. The platform combines microfluidic impedance cytometry for label-free particle characterization and dielectrophoresis for contactless multi-way particle separation. The microfluidic chip has a straightforward coplanar electrode layout and no particle pre-focusing mechanism is required. An original online algorithm analyzes the impedance signals of each incoming particle and regulates in real time the dielectrophoretic voltages according to a desired control logic. As a proof-of-concept, three operation modes are demonstrated on a mixture of 8, 10, and 12 μm diameter beads: (i) particle position swapping across the channel axis, irrespective of particle size, (ii) size-based particle separation, irrespective of particle position, and (iii) sorting of a selected sequence of particles. As a perspective, the versatility of impedance cytometry and dielectrophoresis, and the possibility of configuring alternative control logics, hold promise for advanced particle and cell manipulation.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4lc00622dDOI Listing

Publication Analysis

Top Keywords

particle
9
impedance cytometry
8
particle separation
8
particle position
8
irrespective particle
8
real-time impedance-activated
4
impedance-activated dielectrophoretic
4
dielectrophoretic actuation
4
actuation reconfigurable
4
reconfigurable manipulation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!