As health equity becomes a prioritized goal in global health policy, extensive research has revealed that socio-economic and geographical factors jointly exacerbate barriers to medical service access for both internal and international migrant populations, further accelerating existing health disparities. This study explores healthcare service utilization disparities among internal migrants in China, a population profoundly affected by the country's economic reforms and urbanization since the late 1970s. These transformations have led to significant migratory movements and subsequent healthcare challenges for these populations. Leveraging data from the 2017 China Migrant Dynamic Survey, comprising 169,989 samples across 28 provinces, we introduce a novel metric-the "No Treatment ratio" (NT-ratio). This ratio quantifies the proportion of migrants who, after falling ill, choose not to seek treatment relative to the total migrant population in a given province or region, serving as a critical measure of health risk. Building upon Anderson's Behavioral Model of Health Services Use, we adapted the model to better reflect the unique circumstances of migrant populations. The study employs spatial autocorrelation, hotspot analysis, and geodetector techniques to dissect the multifaceted factors influencing healthcare disparities. Our Findings reveal that the NT-ratio is significantly higher in eastern and northeastern China. Key factors influencing the NT-ratio include age, left-behind experiences, health education, and medical resources. In response to these disparities, we recommend optimizing the distribution of medical resource, strengthening tiered diagnosis and treatment systems, and integrating health, education, and social security resources. These measures aim to improve healthcare utilization among migrant populations and reduce health inequities, aligning with global health objectives.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11495394 | PMC |
http://dx.doi.org/10.3389/fpubh.2024.1447723 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!