Enhancement of the ionic conductivity and reduction of diffusion barriers of lithium-ion batteries are crucial for improving the performance of the fast-growing energy storage devices. Recently, the fast-charging capability of commercial-like lithium-ion anodes with the smallest modification of the current manufacturing technology has been of great interest. We used first principles methods computations with density functional theory and the climbing image-nudged elastic band method to evaluate the impact of an external electric field on the stability, electronic band gap, ionic conductivity, and lithium-ion diffusion coefficient of penta-graphene nanoribbons upon lithium adsorption. By adsorbing a lithium atom, these semiconductor nanoribbons become metal with a formation energy of -0.22 eV, and an applied electric field perpendicular to the surface of these nanoribbons further stabilizes the structure of these lithium-ion systems. Using the Nernst-Einstein relation, in the absence of an electric field, the ionic conductivity of these penta-graphene nanoribbons amounts to 1.24 × 10 S cm. In the presence of an electric field, this conductivity can reach a maximum value of 8.89 × 10 S cm, emphasizing the promising role of an electric field for supporting fast-charging capability. Our results highlight the role of an external electric field as a novel switch to improve the efficiency of lithium-ion batteries with penta-graphene nanoribbon electrodes and open a new horizon for the use of pentagonal materials as anode materials in the lithium-ion battery industry.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11495402 | PMC |
http://dx.doi.org/10.1039/d4ra05464d | DOI Listing |
Macromol Rapid Commun
December 2024
Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, St. Gallen, 9014, Switzerland.
Facemask materials have been under constant development to optimize filtration performance, wear comfort, and general resilience to chemical and mechanical stress. While single-use polypropylene meltblown membranes are the established go-to material for high-performing mask filters, they are neither sustainable nor particularly resistant to sterilization methods. Herein an in-depth analysis is provided of the sterilization efficiency, filtration efficiency, and breathing resistance of selected aerosol filters commonly implemented in facemasks, with a particular focus on the benefits of nanofibrous filters.
View Article and Find Full Text PDFBMC Med Inform Decis Mak
December 2024
Fakher Mechatronic Research Center, Kerman University of Medical Sciences, Kerman, Iran.
Background: Parkinson's disease (PD) is a neurodegenerative disorder that affects millions of people worldwide. Mobile technologies enable Parkinson's patients to improve their quality of life, manage symptoms, and enhance overall well-being through various applications (apps). There is no integrated list of specific capabilities available to cater to the unique needs of Parkinson's patient-focused mobile apps.
View Article and Find Full Text PDFNat Microbiol
December 2024
Plant-Microbe Interactions, Institute of Environmental Biology, Department of Biology, Science4Life, Utrecht University, Utrecht, the Netherlands.
Potato vigour, the growth potential of seed potatoes, is a key agronomic trait that varies significantly across production fields due to factors such as genetic background and environmental conditions. Seed tuber microbiomes are thought to influence plant health and crop performance, yet the precise relationships between microbiome composition and potato vigour remain unclear. Here we conducted microbiome sequencing on seed tuber eyes and heel ends from 6 potato varieties grown in 240 fields.
View Article and Find Full Text PDFSci Rep
December 2024
School of Oil & Natural Gas Engineering, SouthWest Petroleum University, Chengdu, 610500, China.
Unconventional gas reservoirs, characterized by their complex geologies and challenging extraction conditions, demand innovative approaches to enhance gas production and ensure economic viability. Well stimulation techniques, such as hydraulic fracturing and acidizing, have become indispensable tools in unlocking the potential of these tight formations. However, the effectiveness of these techniques can vary widely depending on the specific characteristics of the reservoir.
View Article and Find Full Text PDFSci Rep
December 2024
Neurology, Icahn School of Medicine at Mount Sinai, New York, USA.
We used machine learning to investigate the residual visual field (VF) deficits and macula retinal ganglion cell (RGC) thickness loss patterns in recovered optic neuritis (ON). We applied archetypal analysis (AA) to 377 same-day pairings of 10-2 VF and optical coherence tomography (OCT) macula images from 93 ON eyes and 70 normal fellow eyes ≥ 90 days after acute ON. We correlated archetype (AT) weights (total weight = 100%) of VFs and total retinal thickness (TRT), inner retinal thickness (IRT), and macular ganglion cell-inner plexiform layer (GCIPL) thickness.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!