Metastatic lung cancer remains a leading cause of death worldwide, with its intricate metastatic cascade posing significant challenges to researchers and clinicians. Despite substantial progress in understanding this cascade, many aspects remain elusive. Microfluidic-based vasculature-on-chip models have emerged as powerful tools in cancer research, enabling the simulation of specific stages of tumor progression. In this study, we investigate the extravasation behaviors of A549 lung cancer cell subpopulations, revealing distinct differences based on their phenotypes. Our results show that holoclones, which exhibit an epithelial phenotype, do not undergo extravasation. In contrast, paraclones, characterized by a mesenchymal phenotype, demonstrate a notable capacity for extravasation. Furthermore, we observed that paraclones migrate significantly faster than holoclones within the microfluidic model. Importantly, we found that the depletion of vascular endothelial growth factor (VEGF) effectively inhibits the extravasation of paraclones. These findings highlight the utility of microfluidic-based models in replicating key aspects of the metastatic cascade. The insights gained from this study underscore the potential of these models to advance precision medicine by facilitating the assessment of patient-specific cancer cell dynamics and drug responses. This approach could lead to improved strategies for predicting metastatic risk and tailoring personalized cancer therapies, potentially involving the sampling of cancer cells from patients during tumor resection or biopsies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11493642PMC
http://dx.doi.org/10.3389/fbioe.2024.1457884DOI Listing

Publication Analysis

Top Keywords

lung cancer
8
metastatic cascade
8
cancer cell
8
cancer
6
assessing metastatic
4
metastatic potential
4
potential circulating
4
circulating tumor
4
tumor cells
4
cells organ-on-chip
4

Similar Publications

Purpose: Nano-drug delivery systems (NDDS) have become a promising alternative and adjunctive strategy for lung cancer (LC) treatment. However, comprehensive bibliometric analyses examining global research efforts on NDDS in LC are scarce. This study aims to fill this gap by identifying key research trends, emerging hotspots, and collaboration networks within the field of NDDS and LC.

View Article and Find Full Text PDF

Lung cancer is one of the major causes of cancer morbidity and mortality. Subtyping of non-small cell lung cancer is necessary owing to different treatment options. This study is to evaluate the value of immunohistochemical expression of glypican-1 in the diagnosis of lung squamous cell carcinoma (SCC).

View Article and Find Full Text PDF

Background: The benefit of treatment with tyrosine kinase inhibitors targeting the epidermal growth factor receptor (EGFR-TKI) for lung adenocarcinoma (ADC), stratified by ethnicity, has not yet been fully elucidated.

Methods: We searched PubMed, Embase, and Cochrane databases for studies that investigated EGFR-TKI for lung ADC. We computed hazard ratios (HRs) or risk ratios (RRs) for binary endpoints, with 95% confidence intervals (CIs).

View Article and Find Full Text PDF

Background: The use of local consolidative therapy (LCT) in patients with oligometastatic non-small cell lung cancer (NSCLC) is rapidly evolving, with a preponderance of data supporting the benefits of such therapeutic approaches incorporating pulmonary resection for appropriately selected candidates. However, practices vary widely institutionally and regionally, and evidence-based guidelines are lacking.

Methods: The Society of Thoracic Surgeons assembled a panel of thoracic surgical oncologists to evaluate and synthesize the available evidence regarding the role of pulmonary resection as LCT.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!