Karst ecosystems, especially tropical karst forests, are crucial to the global carbon cycle. In mountainous and hilly areas, elevation-related changes in environment and vegetation often lead to shifts in the accumulation and decomposition of soil organic carbon (SOC). However, the elevational patterns and influencing variables of SOC and its fractions in tropical karst forest ecosystems remain largely unexplored. Here, we analyzed the elevational patterns of SOC and its fractions in the topsoil and subsoil in the tropical seasonal rainforests within typical peak-cluster depression region of Southwest China. Our results indicated that the SOC content was highest at 400 m asl, which was significantly higher than that at 200 m asl ( < 0.05). Overall, SOC content demonstrated an increasing trend with rising elevation. Additionally, SOC content was significantly higher in the topsoil compared to the subsoil ( < 0.05). The majority of SOC fractions exhibited an increase with elevation but decrease with soil depth. Notably, only water-soluble organic carbon (WSOC) displayed a decrease with elevation. Meanwhile, recalcitrant organic carbon (ROC, 54.27%), particulate organic carbon (POC, 30.19%), and easily oxidizable organic carbon (EOC, 16.95%) were the main SOC fractions. Labile organic carbon (LOC) in the karst forest soil was predominantly composed of EOC and POC. Correlation analysis unveiled significant positive correlations between SOC and certain fractions with elevation, soil total nitrogen, and exchangeable magnesium. Conversely, significant negative correlations were observed with soil bulk density (SBD), soil total phosphorus, and litter phosphorus (Litter P). Redundancy analysis indicated that elevation, SBD, and Litter P were the main environmental variables influencing shifts in SOC and its fractions. Structural equation models showed that SOC was primarily directly impacted by soil properties but indirectly impacted by elevation. ROC was mainly associated with the direct effects of soil properties and litterfall, although elevation exerted a substantial impact through indirect pathways. Moreover, LOC was predominantly influenced by the direct impact of soil properties. Therefore, this study demonstrates that SOC and its fractions are strongly influenced by elevation in karst peak-cluster depression regions and have important implications for forest management and sustainable ecosystem development in these regions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11493711 | PMC |
http://dx.doi.org/10.3389/fpls.2024.1424891 | DOI Listing |
Acc Chem Res
January 2025
Shenzhen Grubbs Institute and Department of Chemistry, Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.
ConspectusChiral organosilicon compounds bearing a Si-stereogenic center have attracted increasing attention in various scientific communities and appear to be a topic of high current relevance in modern organic chemistry, given their versatile utility as chiral building blocks, chiral reagents, chiral auxiliaries, and chiral catalysts. Historically, access to these non-natural Si-stereogenic silanes mainly relies on resolution, whereas their asymmetric synthetic methods dramatically lagged compared to their carbon counterparts. Over the past two decades, transition-metal-catalyzed desymmetrization of prochiral organosilanes has emerged as an effective tool for the synthesis of enantioenriched Si-stereogenic silanes.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Department of Energy, Environmental & Chemical Engineering Washington University in St. Louis, St. Louis, Missouri 63130, United States.
The hydrolysis rates of many organic chemicals are accelerated under alkaline conditions by the presence of hydroxide (HO), which is typically assumed to be the predominant species contributing to base-catalyzed hydrolysis in both natural waters and laboratory buffers used in standard protocols. In this study, we demonstrated that weak bases (e.g.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
Department of Physics, Indian Institute of Technology Delhi (IITD), Delhi 110016, India.
The oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are considered to be the most important processes in metal-air batteries and regenerative fuel cell devices. Metal-organic polymers are attracting interest as promising precursors of advanced metal/carbon electrocatalysts because of their hierarchical porous structure along with the integrated metal-carbon framework. We developed carbon-coated CNTs with Ni/Fe and Cu/Fe as active sites.
View Article and Find Full Text PDFSci Adv
January 2025
Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395, Japan.
The pursuit of boron-based organic compounds with multiresonance (MR)-induced thermally activated delayed fluorescence (TADF) is propelled by their potential as narrowband blue emitters for wide-gamut displays. Although boron-doped polycyclic aromatic hydrocarbons in MR compounds share common structural features, their molecular design traditionally involves iterative approaches with repeated attempts until success. To address this, we implemented machine learning algorithms to establish quantitative structure-property relationship models, predicting key optoelectronic characteristics, such as full width at half maximum (FWHM) and main peak wavelength, for deep-blue MR candidates.
View Article and Find Full Text PDFLangmuir
January 2025
ESYCOM, CNRS-UMR 9007, Université Gustave Eiffel, F-77454 Marne-la-Vallée, France.
This study investigates the synthesis, characterization, and functional properties of well-aligned zinc oxide (ZnO) nanowires (NWs) obtained by a two-step hydrothermal method. ZnO NWs were grown on silicon substrates precoated with a ZnO seed layer. The growth process was conducted at 90 °C for different durations (2, 3, and 4 h) to examine the time-dependent evolution of the nanowire properties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!