A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Where do we start? Guidance for technology implementation in maintenance management for manufacturing. | LitMetric

Recent efforts in Smart Manufacturing (SM) have proven quite effective at elucidating system behavior using sensing systems, communications and computational platforms, along with statistical methods to collect and analyze real-time performance data. However, how do you effectively select where and when to implement these technology solutions within manufacturing operations? Furthermore, how do you account for the human-driven activities in manufacturing when inserting new technologies? Due to a reliance on human problem solving skills, today's maintenance operations are largely manual processes without wide-spread automation. The current state-of-the-art maintenance management systems and out-of-the-box solutions do not directly provide necessary synergy between human and technology, and many paradigms ultimately keep the human and digital knowledge systems separate. Decision makers are using one or the other on a case-by-case basis, causing both human and machine to cannibalize each other's function, leaving both disadvantaged despite ultimately having common goals. A new paradigm can be achieved through a hybridized systems approach - where human intelligence is effectively augmented with sensing technology and decision support tools, including analytics, diagnostics, or prognostic tools. While these tools promise more efficient, cost-effective maintenance decisions, and improved system productivity, their use is hindered when it is unclear what core organizational or cultural problems they are being implemented to solve. To explicitly frame our discussion about implementation of new technologies in maintenance management around these problems, we adopt well established error mitigation frameworks from human factors experts - who have promoted human-systems integration for decades - to maintenance in manufacturing. Our resulting tiered mitigation strategy guides where and how to insert SM technologies into a human-dominated maintenance management process.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11494710PMC
http://dx.doi.org/10.1115/1.4044105DOI Listing

Publication Analysis

Top Keywords

maintenance management
16
maintenance
7
human
6
manufacturing
5
start? guidance
4
technology
4
guidance technology
4
technology implementation
4
implementation maintenance
4
management
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!