Percutaneous needle insertions are commonly performed for diagnostic and therapeutic purposes as an effective alternative to more invasive surgical procedures. However, the outcome of needle-based approaches relies heavily on the accuracy of needle placement, which remains a challenge even with robot assistance and medical imaging guidance due to needle deflection caused by contact with soft tissues. In this paper, we present a novel mechanics-based 2D bevel-tip needle model that can account for the effect of nonlinear strain-dependent behavior of biological soft tissues under compression. Real-time finite element simulation allows multiple control inputs along the length of the needle with full three-degree-of-freedom (DOF) planar needle motions. Cross-validation studies using custom-designed multi-layer tissue phantoms as well as heterogeneous chicken breast tissues result in less than 1mm in-plane errors for insertions reaching depths of up to 61 mm, demonstrating the validity and generalizability of the proposed method.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11494283 | PMC |
http://dx.doi.org/10.1109/icra57147.2024.10610110 | DOI Listing |
Rep U S
October 2024
Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA.
In diagnosing and treating prostate cancer the flexible bevel tip needle insertion surgical technique is commonly used. Bevel tip needles experience asymmetric loading on the needle's tip, inducing natural bending of the needle and enabling control mechanisms for precise placement of the needle during surgery. Several methods leverage the needles natural bending to provide autonomous control of needle insertion for accurate needle placement in an effort to reduce excess tissue damage and improve patient outcomes from needle insertion intraventions.
View Article and Find Full Text PDFIEEE Int Conf Robot Autom
May 2024
Yanzhou Wang, Lidia Al-Zogbi, Axel Krieger, and Iulian Iordachita are with the Department of Mechanical Engineering and the Laboratory of Computational Sensing and Robotics, Johns Hopkins University, Baltimore, MD, USA.
Percutaneous needle insertions are commonly performed for diagnostic and therapeutic purposes as an effective alternative to more invasive surgical procedures. However, the outcome of needle-based approaches relies heavily on the accuracy of needle placement, which remains a challenge even with robot assistance and medical imaging guidance due to needle deflection caused by contact with soft tissues. In this paper, we present a novel mechanics-based 2D bevel-tip needle model that can account for the effect of nonlinear strain-dependent behavior of biological soft tissues under compression.
View Article and Find Full Text PDFIEEE Sens J
June 2024
Mechanical Engineering Department, Johns Hopkins University, MD 21201 USA.
J Med Robot Res
December 2023
Mechanical Engineering, Johns Hopkins University, 3400 North Charles St., Baltimore, Maryland 21218, United States.
Heliyon
February 2024
Department of Medical Information Engineering, School of Biomedical Engineering Anhui Medical University, China.
Percutaneous needle insertion is a minimally invasive surgery with broad medical application prospects, such as biopsy and brachytherapy. However, the currently adopted rigid needles have limitations, as they cannot bypass obstacles or correct puncture deviations and can only travel along a straight path. Bevel-tip flexible needles are increasingly being adopted to address these issues, owing to their needle body's ease of deformation and bending.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!