A brain-wide solute transport model of the glymphatic system.

J R Soc Interface

Department of Mechanical Engineering, University of Rochester, Rochester, NY 14627, USA.

Published: October 2024

Brain waste is largely cleared via diffusion and advection in cerebrospinal fluid (CSF). CSF flows through a pathway referred to as the glymphatic system, which is also being targeted for delivering drugs to the brain. Despite the importance of solute transport, no brain-wide models for predicting clearance and delivery through perivascular pathways and adjacent parenchyma existed. We devised such a model by upgrading an existing model of CSF flow in the mouse brain to additionally solve advection-diffusion equations, thereby estimating solute transport. We simulated steady-state transport of 3 kDa dextran injected proximal to the perivascular space (PVS) of the middle cerebral artery, mimicking experiments. We performed a sensitivity analysis of 11 biological properties of PVSs and brain parenchyma by repeatedly simulating solute transport with varying parameter values. Parameter combinations that led to a large total pressure gradient, poor CSF perfusion or a steep solute gradient were deemed unrealistic. Solute concentrations in parenchyma were most sensitive to changes in pial PVS size, as this parameter linearly affects volume flow rates. We also found that realistic transport requires both highly permeable penetrating PVSs and high-resistance parenchyma. This study highlights the potential of brain-wide models to provide insights into solute transport processes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11496954PMC
http://dx.doi.org/10.1098/rsif.2024.0369DOI Listing

Publication Analysis

Top Keywords

solute transport
20
glymphatic system
8
brain-wide models
8
transport
7
solute
6
brain-wide solute
4
transport model
4
model glymphatic
4
brain
4
system brain
4

Similar Publications

Three-Dimensionally Printed Ionogel-Coated Ceramic Electrolytes for Solid-State Lithium Batteries.

ACS Nano

January 2025

Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China.

Stereolithography three-dimensional (3D) printing technology enables the customization of ceramic-based solid electrolyte structures with desired electrochemical properties; however, formulating slurries that both are highly ceramic-loaded and have low viscosity for printing poses a challenge. Here, we propose an ionogel-coated ceramic approach to prepare a shear-thinning fast-ion conductor ceramic (LiLaZrTaO) slurry, which possesses both a high ceramic content of 50 wt % and a low viscosity of 1.53 Pa·s.

View Article and Find Full Text PDF

High-Efficiency Y6 Homojunction Organic Solar Cells Enabled by a Secondary Hole Transport Layer.

Small

January 2025

Centre for Organic Photonics & Electronics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia.

Y6 homojunction solar cells are prepared using the exciton/electron-blocking material poly[9,9-di-n-octylfluorene-alt-N-(4-sec-butylphenyl)diphenylamine] (TFB) as a secondary hole transport layer material in conjunction with PEDOT:PSS. Using this device architecture, a maximum power conversion efficiency (PCE) of 2.57% is achieved, which is the highest reported thus far for a solution-processed small molecule homojunction organic photovoltaic (OPV) device.

View Article and Find Full Text PDF

Stability, bifurcation, and large-amplitude vibration analysis of a symmetric magnetic spherical pendulum.

Sci Prog

January 2025

Applied Mechanics & Design (AMD) Research Group, Department of Mechanical Engineering, Faculty of Engineering, University of Port Harcourt, Port Harcourt, Nigeria.

Existing studies on the symmetric spherical pendulum are limited to small- and moderate-amplitude vibrations. This study was conducted to obtain accurate solutions for analysis of the large-amplitude vibration of a symmetric magnetic spherical pendulum using the continuous piecewise linearization method (CPLM). The stability conditions and bifurcation of the pendulum were derived based on the critical points, while the CPLM was used to estimate the frequency response and vibration histories to less than 0.

View Article and Find Full Text PDF

As humans age, they experience deformity and a decrease in their bone strength, such brittleness in the bones ultimately lead to bone fracture. Magnetic field exposure combined with physical exercise may be useful in mitigating age-related bone loss by improving the canalicular fluid motion within the bone's lacuno-canalicular system (LCS). Nevertheless, an adequate amount of fluid induced shear stress is necessary for the bone mechano-transduction and solute transport in the case of brittle bone diseases.

View Article and Find Full Text PDF

Hydrogen (H), as a high-energy-density molecule, offers a clean solution to carry energy. However, the high diffusivity and low volumetric density of H pose a challenge for long-term storage and transportation. Liquid organic hydrogen carriers (LOHCs) have been suggested as a strategic way to store and transport hydrogen in stable molecules.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!