Achieving accurate characterization of protein structures in the gas phase continues to be a formidable challenge. To tackle this issue, the present study employs Molecular Dynamics (MD) simulations in tandem with enhanced sampling techniques (methods designed to efficiently explore protein conformations). The objective is to identify suitable structures of proteins by contrasting their calculated Collision Cross-Section (CCS) with those observed experimentally. Significant discrepancies were observed between the initial MD-simulated and experimentally measured CCS values through Ion Mobility-Mass Spectrometry (IMS-MS). To bridge this gap, we employed two distinct enhanced sampling methods, Harmonic Biasing Potential and Adaptive Biasing Force, which help the proteins overcome energy barriers to adopt more compact configurations. These techniques leverage the radius of gyration as a reaction coordinate (guiding parameter), guiding the system toward compressed states that potentially match experimental configurations more closely. The guiding forces are only employed to overcome existing barriers and are removed to allow the protein to naturally arrive at a potential gas phase configuration. The results demonstrated close alignment (within ∼4%) between simulated and experimental CCS values despite using different strengths and/or methods, validating their efficacy. This work lays the groundwork for future studies aimed at optimizing biasing methods and expanding the collective variables used for more accurate gas-phase structural predictions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jctc.4c00288 | DOI Listing |
Lithofacies classification and identification are of great significance in the exploration and evaluation of tight sandstone reservoirs. Existing methods of lithofacies identification in tight sandstone reservoirs face issues such as lengthy manual classification, strong subjectivity of identification, and insufficient sample datasets, which make it challenging to analyze the lithofacies characteristics of these reservoirs during oil and gas exploration. In this paper, the Fuyu oil formation in the Songliao Basin is selected as the target area, and an intelligent method for recognizing the lithophysics reservoirs in tight sandstone based on hybrid multilayer perceptron (MLP) and multivariate time series (MTS-Mixers) is proposed.
View Article and Find Full Text PDFSci Rep
December 2024
Faculté des Sciences et Technologies, LEMTA - Université de Lorraine - CNRS UMR 7563, Boîte Postale 70239, Vandoeuvre les Nancy cedex, 54506, France.
The wetting characteristics of fluids play a crucial role in various fields of interface and surface science. Contact angle serves as a fundamental indicator of wetting behavior. However, accurate quantification of wetting phenomena even at the macroscale often poses challenges, particularly due to the hysteresis between receding and advancing contact angles.
View Article and Find Full Text PDFSci Rep
December 2024
Hubei Key Laboratory of Oil and Gas Drilling and Production Engineering, Yangtze University, Wuhan, 430100, China.
The application of classic foaming agent faces several issues, including excessive use of defoaming agent, inadequate defoaming, pipeline blockage due to silicone oil precipitation, and high development cost of the foaming agent. To address the aforementioned issues, a novel intelligent foaming agent was created. This resulted in the development of a new intelligent foaming and discharging agent system.
View Article and Find Full Text PDFSci Rep
December 2024
College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, China.
A cost-effective industrial TiOSO solution was employed to fabricate visible light active sulfur-doped titanium dioxide (S-TiO) via a facile hydrothermal method. The effect of calcination temperature on morphology, particle size, crystallinity, and photocatalytic property of S-TiO was systematically investigated. Successful incorporation of sulfur into TiO was confirmed by carbon-sulfur analysis, X-ray photoelectron spectroscopy (XPS), and Energy dispersive spectrometer (EDS).
View Article and Find Full Text PDFSci Rep
December 2024
State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
Candida albicans is a common opportunistic pathogen, causing infections ranging from superficial to bloodstream infections. The limited antifungal options and rising drug resistance challenge clinical treatment. We screened 98 essential oils and identified 48 with antifungal activity against Candida albicans at 1% concentration, determining their minimum inhibitory concentrations (MIC).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!