Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The conventional lateral flow assay (LFA) fails to the demands for the accurate screening of viruses as a result of its low sensitivity of colorimetric signal output and poor universality limited by antibody pairs. Here, a magnetically assisted dual-signal output LFA platform is developed for the ultrasensitive, universal, and flexible detection of viruses. A "three-in-one" multifunctional probe (MAuDQD) is prepared using a 180 nm FeO core to load numerous Au nanoparticles (NPs) and two layers of QDs, which can substantially improve the sensitivity of LFA through coupling with the effects of magnetic enrichment and colorimetric/fluorescent enhancement. Wheat germ agglutinin (WGA)-modified MAuDQD attained the broad-spectrum capture viral membrane proteins and the colorimetric/fluorescent dual-mode detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and monkeypox virus (MPXV) on the LFA strip. In the colorimetric mode, the target viruses detected directly, with the visual sensitivity reaching 0.1-0.5 ng mL and the fluorescent mode supported quantitative analysis of SARS-CoV-2/MPXV with limits of detection decreasing to pg mL level. Practicability of the MAuDQD@WGA-LFA is verified through the detection of 33 real clinical samples, showing the proposed assay has a great potential to become a sensitive, accurate, and universal tool for on-site monitoring of viral infections.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.202406053 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!