We apply the Laplace approximation to a mathematical formulation of DNA cyclization J factors, leading to a formula that involves energies of local minima of the DNA energy, factors coming from the Hessian of the energy near each minimum, and geometric factors arising from the orientational portion of J. The approximation is derived in a quite general setting that encompasses both rigid base and rigid basepair models common in the literature. The approximation is applied to several families of 200-400 bp DNA, some relatively straight (fragments of λ-phage) and others quite bent (constructs that include up to 10 A tracts). The accuracy of the approximation is assessed by comparing with (more time-consuming) Monte Carlo computations: Laplace is within 20% of Monte Carlo for most 200 bp molecules and undershoots Monte Carlo by about 30% for 300 bp and 50% for 400 bp. We explore length and sequence dependence, both for our overall approximation of J and for its energy and entropic components, and make comparisons to a different approximation of J proposed in the literature.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bpj.2024.10.012 | DOI Listing |
Volume electron microscopy (vEM) enables biologists to visualize nanoscale 3D ultrastructure of entire eukaryotic cells and tissues prepared by heavy atom staining and plastic embedding. The highest resolution vEM technique is focused ion-beam scanning electron microscopy (FIB-SEM), which provides nearly isotropic (~5-10 nm) spatial resolution at fluences of > 10,000 e /nm . However, it is not clear how such high resolution is achievable because serial block-face (SBF) SEM, which incorporates an in-situ ultramicrotome instead of a Ga FIB beam, results in radiation-induced collapse of similar specimen blocks at fluences of only ~20 e /nm .
View Article and Find Full Text PDFA significant advancement in synthetic biology is the development of synthetic gene circuits with predictive Boolean logic. However, there is no universally accepted or applied statistical test to analyze the performance of these circuits. Many basic statistical tests fail to capture the predicted logic (OR, AND, etc.
View Article and Find Full Text PDFHeliyon
January 2025
Health and Environment Research Center, Ilam University of Medical Sciences, Ilam, Iran.
Food toxicity through heavy metals, particularly from cereal consumption, poses significant threats to human health. This study studied various toxic heavy metals (Pb, As, Cr, Cd, Co, Hg, and Ag) in cereal products and their human health risk assessment in Ilam province, Iran. This study analyzed 30 samples of the most commonly cultivated cereals (wheat, rice, corn, pea, and lentil) in Ilam province.
View Article and Find Full Text PDFCogn Neurodyn
December 2025
The Medical Big Data Research Center, Northwest University, Xi'an, 710127 China.
Insomnia, as a common sleep disorder, is the most common complaints in medical practice affecting a large proportion of the population on a situational, recurrent or chronic basis. It has been demonstrated that, during wakefulness, patients with insomnia exhibit increased EEG power in theta, beta, and gamma band. However, the relevant mechanisms underlying such power changes are still lack of understanding.
View Article and Find Full Text PDFNanoscale
January 2025
Photon Science Research Center for Carbon Dioxide, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China.
Oxygen vacancies (V's) are of paramount importance in influencing the properties and applications of ceria (CeO). Yet, comprehending the distribution and nature of V's poses a significant challenge due to the vast number of electronic configurations and intricate many-body interactions among V's and polarons (Ce ions). In this study, we established a cluster expansion model based on first-principles calculations and statistical learning to decouple the interactions among the Ce ions and V's, thereby circumventing the limitations associated with sampling electronic configurations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!