Repair of the damaged meniscus is a scientific challenge owing to the poor self-healing potential of the white area of the meniscus. Tissue engineering provides a new method for the repair of meniscus injuries. In this study, we explored the superiority of 2% hyaluronic acid chitin hydrogel in temperature sensitivity, in vitro degradation, biocompatibility, cell adhesion, and other biological characteristics, and investigated the advantages of hyaluronic acid (HA) and Transforming Growth Factor β1 (TGF-β1) in promoting cell proliferation and a matrix formation phenotype. The hydrogel loaded with HA and TGF-β1 promoted cell proliferation. The HA + TGF-β1 mixed group showed the highest glycosaminoglycan (GAG) content and promoted cell migration. Hydroxypropyl chitin (HPCH), HA, and TGF-β1 were combined to form a composite hydrogel with a concentration of 2% after physical cross-linking, and this was injected into a rabbit model of a meniscus full-thickness tear. After 12 weeks of implantation, the TGF-β1 + HA/HPCH composite hydrogel was significantly better than HPCH, HA/HPCH, TGF-β1 + HPCH, and the control group in promoting meniscus repair. In addition, the new meniscus tissue of the TGF-β1 + HA/HPCH composite hydrogel had a tissue structure and biochemical content similar to that of the normal meniscus tissue.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11520169 | PMC |
http://dx.doi.org/10.1186/s13018-024-05144-6 | DOI Listing |
Iowa Orthop J
January 2025
Department of Orthopedic Surgery, University of Minnesota Medical Center, Minneapolis, Minnesota, USA.
Background: Within the realm of orthopedic literature, the determination of statistical significance for outcomes relies on probability analysis and the reporting of P-values. The aim of this study was to employ fragility analysis as a means of evaluating the resilience of randomized controlled trials (RCTs) that assess meniscus surgeries. It was hypothesized that dichotomous outcomes would be statistically fragile and comparable to other orthopedic specialties.
View Article and Find Full Text PDFAm J Sports Med
January 2025
Department of Orthopedic Surgery, Columbia University Irving Medical Center, New York, New York, USA.
J ISAKOS
January 2025
Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA. Electronic address:
Objectives: To compare the biomechanical strength and stiffness of the native posteromedial and posterolateral meniscotibial ligament complex (MTLC) to suture anchor repair of the MTLC.
Methods: Biomechanical testing was performed on 24 fresh-frozen pediatric human knees. Four conditions were tested: native posteromedial MTLC (n=14), native posterolateral MTLC (n=14), posteromedial MTLC repair (n=5), and posterolateral MTLC repair (n=5).
J Magn Reson Imaging
January 2025
Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
Osteoarthritis (OA) is heterogeneous and involves structural changes in the whole joint, such as cartilage, meniscus/labrum, ligaments, and tendons, mainly with short T2 relaxation times. Detecting OA before the onset of irreversible changes is crucial for early proactive management and limit growing disease burden. The more recent advanced quantitative imaging techniques and deep learning (DL) algorithms in musculoskeletal imaging have shown great potential for visualizing "pre-OA.
View Article and Find Full Text PDFMater Today Bio
February 2025
Department of Orthopedics, the Fourth Medical Center of PLA General Hospital, Beijing, 100048, PR China.
A meniscus injury is a common cartilage disease of the knee joint. Despite the availability of various methods for the treatment of meniscal injuries, the poor regenerative capacity of the meniscus often necessitates resection, leading to the accelerated progression of osteoarthritis. Advances in tissue engineering have introduced meniscal tissue engineering as a potential treatment option.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!