AI Article Synopsis

  • - Concerns are rising about polystyrene nanoplastics (PS-NPs) impacting human health, particularly concerning their transfer from mothers to offspring, which can lead to cognitive deficits.
  • - A study involved administering PS-NPs to pregnant and nursing female rats to examine the neurotoxic effects and behavioral changes in their offspring, focusing on mechanisms like ferroptosis in the hippocampus.
  • - Findings indicate that low doses of PS-NPs can induce cognitive decline in offspring by triggering ferroptosis through oxidative stress and affecting key antioxidant levels, highlighting the potential risks of nanoplastics during critical developmental periods.

Article Abstract

There are increasing concerns regarding the rapid expansion of polystyrene nanoplastics (PS-NPs), which could impact human health. Previous studies have shown that nanoplastics can be transferred from mothers to offspring through the placenta and breast milk, resulting in cognitive deficits in offspring. However, the neurotoxic effects of maternal exposure on offspring and its mechanisms remain unclear. In this study, PS-NPs (50 nm) were gavaged to female rats throughout gestation and lactation to establish an offspring exposure model to study the neurotoxicity and behavioral changes caused by PS-NPs on offspring. Neonatal rat hippocampal neuronal cells were used to investigate the pathways through which NPs induce neurodevelopmental toxicity in offspring rats, using iron inhibitors, autophagy inhibitors, reactive oxygen species (ROS) scroungers, P53 inhibitors, and NCOA4 inhibitors. We found that low PS-NPs dosages can cause ferroptosis in the hippocampus of the offspring, resulting in a decline in the cognitive, learning, and memory abilities of the offspring. PS-NPs induced NOCA4-mediated ferritinophagy and promoted ferroptosis by inciting ROS production to activate P53-mediated ferritinophagy. Furthermore, the levels of the antioxidant factors glutathione peroxidase 4 (GPX4) and glutathione (GSH), responsible for ferroptosis, were reduced. In summary, this study revealed that consumption of PS-NPs during gestation and lactation can cause ferroptosis and damage the hippocampus of offspring. Our results can serve as a basis for further research into the neurodevelopmental effects of nanoplastics in offspring.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11520165PMC
http://dx.doi.org/10.1186/s12951-024-02911-9DOI Listing

Publication Analysis

Top Keywords

offspring
11
maternal exposure
8
p53-mediated ferritinophagy
8
gestation lactation
8
hippocampus offspring
8
ps-nps
6
ferroptosis
5
exposure nanopolystyrene
4
nanopolystyrene induces
4
induces neurotoxicity
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!