A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Effects of nickel, lead, and copper stress on the growth and biochemical responses of Aegilops tauschii seedlings. | LitMetric

Heavy metal pollution causes severe abiotic stress in cereal crops around the world. This study investigated the effects of different concentrations (0, 100, 200, and 300 mg·kg) of nickel, lead, and copper stress on the growth and biochemical responses of Aegilops tauschii seedlings, to provide a reference for research on the mechanism of invasion and screening potential sources of wheat tolerance genes. The results showed that nickel, lead, and copper stress caused a significant decrease in the contents of chlorophyll a, chlorophyll b, and chlorophyll (a + b) in A. tauschii, thereby inhibiting photosynthesis to different degrees and hindering seedling growth, which was reflected in significant reductions in plant height and root length, with the most notable effect observed under stress by 300 mg·kg lead. As the concentration of heavy metals increased, the activities of antioxidant enzymes (SOD, POD, and APX), non-enzymatic antioxidants (GSH and AsA), and the contents of osmotic regulatory substances (proline and soluble proteins) in A. tauschii significantly increased. Additionally, heavy metal stress increased HO and TBARS levels. However, when the nickel, lead, and copper concentrations reached 300 mg·kg, no significant differences were found in HO or TBARS levels compared to those in the CK group. To summarize, A. tauschii can mitigate the accumulation of ROS and membrane lipid peroxidation caused by heavy metal stress through self-regulation, thus exhibiting a certain degree of tolerance to stress caused by different concentrations of nickel, lead, and copper. Finally, the evaluation using the membership function method revealed that among the three heavy metals, A. tauschii exhibited the strongest adaptation to Cu, followed by Ni and Pb.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11496656PMC
http://dx.doi.org/10.1038/s41598-024-77143-wDOI Listing

Publication Analysis

Top Keywords

nickel lead
20
lead copper
20
copper stress
12
heavy metal
12
stress
8
stress growth
8
growth biochemical
8
biochemical responses
8
responses aegilops
8
aegilops tauschii
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!