AI Article Synopsis

  • The article introduces a compact and polarization-insensitive Metamaterial energy harvester that operates efficiently in both S-band and C-band frequencies, addressing limitations of current designs that are often large and single-band.
  • The harvester features a unique design with a rectangle strip and embedded hexagonal ring resonators, achieving impressive energy harvesting efficiencies of 97% at 3.5 GHz and 98% at 5.5 GHz.
  • Experimental results from a 3 × 3 array confirm the design's reliability and effectiveness, highlighting its potential for diverse energy harvesting applications due to its high efficiency and small size (10 × 10 mm).

Article Abstract

This article proposes a polarization-insensitive compact Metamaterial (MM) energy harvester that can be used seamlessly in the S-band and C-band frequencies. It is important to focus on the limitations of many current designs of harvesters, which need to be overcome. The existing devices are large and often operate in a single frequency band, while their Energy Harvesting (EH) efficiency is low. The proposed harvester solves these problems using smart technology, using a rectangle strip with two gaps, each containing 50 Ω resistors for efficient energy collecting. Also, four hexagonal ring resonators are embedded into the cross-dumbbell configuration, connecting them with strip lines. Smaller rectangular rings surround these hexagonal rings, each with gaps labelled g1-g4. Despite its sophisticated design, the size of this harvester is (10 × 10) mm only. This harvester operates at frequencies of 3.5 GHz and 5.5 GHz, demonstrating remarkable absorption responses across varying polarizations and incident angles in both transverse electric (TE) and transverse magnetic (TM) modes. The simulation results indicated impressive energy harvesting efficiencies of 97% at 3.5 GHz and 98% at 5.5 GHz. In addition, experiments in an anechoic chamber with a 3 × 3 array (30 × 30) mm were used to confirm the efficiencies empirically. The simulated and measured results showed a strong correlation, confirming the reliability of the proposed design. The proposed MM harvester is distinguished by its high efficiency, polarization-insensitive behaviour, and compactness, making it very promising for many applications in EH.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11496654PMC
http://dx.doi.org/10.1038/s41598-024-75970-5DOI Listing

Publication Analysis

Top Keywords

compact metamaterial
8
metamaterial energy
8
energy harvester
8
s-band c-band
8
energy harvesting
8
proposed harvester
8
harvester
6
energy
5
high-efficient polarization-insensitive
4
polarization-insensitive wide-angle
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!