A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Precision crop mapping: within plant canopy discrimination of crop and soil using multi-sensor hyperspectral imagery. | LitMetric

AI Article Synopsis

  • The study focuses on utilizing advanced optomechanical and imaging technologies for precision agriculture in emerging economies, emphasizing the need for accurate detection of plant and soil at the canopy level for better crop management.
  • High-resolution remote sensors, particularly drones equipped with hyperspectral imagers, are employed to gather data for distinguishing crop from soil in agricultural fields, an area that hasn't been thoroughly explored yet.
  • The research demonstrates exceptional discrimination accuracy (99-100%) between crops and soils, highlighting the importance of endmember selection, flying height, and spectral unmixing techniques, and it provides valuable datasets for future agricultural studies.

Article Abstract

Leveraging diverse optomechanical and imaging technologies for precision agriculture applications is gaining attention in emerging economies. The precise spatial detection of plant objects in farms is crucial for optimizing plant-level nutrition and managing pests and diseases. High-resolution remote sensors mounted on drones have been increasingly deployed for large-scale crop mapping and field variability characterization. While field-level crop identification and crop-soil discrimination have been studied extensively, within-plant canopy discrimination of crop and soil has not been explored in real agricultural farms. The objectives of this study are: (i) adoption and assessment of spectral unmixing for discriminating crop and soil at within-plant canopy level, and (ii) generation of benchmark terrestrial and drone-based hyperspectral datasets for plant or sub-plant level discrimination using various spectral mixture modelling approaches and sources of endmembers. We acquired hyperspectral imagery of vegetable crops using a frame-based sensor mounted on a drone flying at different heights. Further, several linear, non-linear, and sparse-based spectral unmixing methods were used to discriminate plant and soil based on spectral signatures (endmembers) extracted from different spectral libraries prepared using in situ or field, ground-based, and drone-based hyperspectral imagery. The results, validated against pixel-to-pixel ground truth data, indicate an overall crop-soil discrimination accuracy of 99-100%, subject to a combination of endmember source and flying height. The influences of different endmember sources, spatial resolution as indicated by flying height, and inversion algorithms on the quality of estimated abundances are assessed from a verifiable and functionally relevant perspective. The generated hyperspectral datasets and ground truth data can be used for developing and testing new methods for sub-canopy level soil-crop discrimination in various agricultural applications of remote sensing.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11496745PMC
http://dx.doi.org/10.1038/s41598-024-75394-1DOI Listing

Publication Analysis

Top Keywords

crop soil
12
hyperspectral imagery
12
crop mapping
8
canopy discrimination
8
discrimination crop
8
crop-soil discrimination
8
within-plant canopy
8
spectral unmixing
8
drone-based hyperspectral
8
hyperspectral datasets
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!