This work presents an approach to exploiting Nuclear Magnetic Resonance (NMR) relaxometry data (H spin-lattice relaxation rates covering the frequency range from below 1 kHz to 10 MHz) for the purpose of differentiating between pathological and reference tissues. Characteristic quantities (markers) that can be obtained in a straightforward manner, not resorting to an advanced analysis of H spin-lattice relaxation data, have been identified and compared for pathological and reference colon tissues. Moreover, the relaxation data have been parametrised in terms of Lorentzian spectral densities and the possibility of using the obtained dipolar relaxation constants and correlation times as biomarkers to assess the state of tissues has been discussed. It has also been demonstrated that the relaxation data for the reference and the pathological tissues can be attributed to two groups (for each case). The studies are a step towards exploiting the potential of NMR relaxometry for characterisation of pathological changes in tissues.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11496659 | PMC |
http://dx.doi.org/10.1038/s41598-024-74055-7 | DOI Listing |
HRB Open Res
September 2024
UCD School of Public Health, Physiotherapy and Sports Science, Health Sciences Centre, University College Dublin, Dublin, Leinster, Ireland.
Background: Following Spinal Cord Injury (SCI), 53% of people develop neuropathic pain (NP). NP can be more debilitating than other consequences of SCI, and a persistent health issue. Pharmacotherapies are commonly recommended for NP management in SCI, although severe pain often remains refractory to these treatments in many sufferers.
View Article and Find Full Text PDFF1000Res
January 2025
Department of Medical Imaging Technology, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
Introduction: Magnetic resonance imaging (MRI) is essential for brain imaging, but conventional methods rely on qualitative contrast, are time-intensive, and prone to variability. Magnetic resonance finger printing (MRF) addresses these limitations by enabling fast, simultaneous mapping of multiple tissue properties like T1, T2. Using dynamic acquisition parameters and a precomputed signal dictionary, MRF provides robust, qualitative maps, improving diagnostic precision and expanding clinical and research applications in brain imaging.
View Article and Find Full Text PDFDement Geriatr Cogn Dis Extra
December 2024
Division of Clinical Medicine, Department of Psychiatry, Institute of Medicine, University of Tsukuba, Tsukuba, Japan.
Introduction: After Alzheimer's disease, frontotemporal lobar degeneration (FTLD) is the second most common form of early-onset dementia. Despite the heavy burden of care for FTLD, pharmacological and non-pharmacological treatments with sufficient efficacy remain scarce. This study aimed to evaluate the feasibility of a multimodal exercise program for FTLD and to examine preliminary changes in the clinical outcomes of the program in FTLD.
View Article and Find Full Text PDFFront Psychiatry
January 2025
Department of Gynaecology, Guang Zhou Baiyun District Maternal and Child Health Hospital, Guangzhou, China.
Background: Insomnia and depression often receive inadequate attention regarding their association with common menopausal gynecological disorders (GDs), and there is a lack of longitudinal epidemiological evidence. Furthermore, the specific disorders that exhibit the strongest correlation with depression, as well as the potential mediating role of insomnia, remain poorly understood.
Methods: Using data from the Study of Women's Health Across the Nation (SWAN) spanning 1996 to 2008, this study analyzed a sample of 2217 racially diverse premenopausal women (aged 42 to 53 at baseline).
Quant Imaging Med Surg
January 2025
Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
Background: Pediatric growth hormone deficiency (GHD) is a disease resulting from the impaired growth hormone-insulin-like growth factor-1 (GH-IGF-1) axis, but the effects of GHD on children's behavior and brain microstructural structure alterations have not yet been fully clarified. We aimed to investigate the quantitative profiles of gray matter and white matter in pediatric GHD using synthetic magnetic resonance imaging (MRI).
Methods: The data of 50 children with GHD and 50 typically developing (TD) children were prospectively collected.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!