The respiratory Complex I is a highly intricate redox-driven proton pump that powers oxidative phosphorylation across all domains of life. Yet, despite major efforts in recent decades, its long-range energy transduction principles remain highly debated. We create here minimal proton-conducting membrane modules by engineering and dissecting the key elements of the bacterial Complex I. By combining biophysical, biochemical, and computational experiments, we show that the isolated antiporter-like modules of Complex I comprise all functional elements required for conducting protons across proteoliposome membranes. We find that the rate of proton conduction is controlled by conformational changes of buried ion-pairs that modulate the reaction barriers by electric field effects. The proton conduction is also modulated by bulky residues along the proton channels that are key for establishing a tightly coupled proton pumping machinery in Complex I. Our findings provide direct experimental evidence that the individual antiporter modules are responsible for the proton transport activity of Complex I. On a general level, our findings highlight electrostatic and conformational coupling mechanisms in the modular energy-transduction machinery of Complex I with distinct similarities to other enzymes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11496545PMC
http://dx.doi.org/10.1038/s41467-024-53194-5DOI Listing

Publication Analysis

Top Keywords

antiporter modules
8
respiratory complex
8
proton conduction
8
machinery complex
8
complex
7
proton
6
dissected antiporter
4
modules
4
modules establish
4
establish minimal
4

Similar Publications

Personalization of a computational systems biology model of blood platelet calcium signaling.

Biomed Khim

December 2024

Center for Theoretical Problems of Physico-Chemical Pharmacology, Russian Academy of Sciences, Moscow, Russia; Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia.

Anuclear blood cells, platelets, are the basis for the formation of blood clots in human vessels. While antiplatelet therapy is most often used after ischemic events, there is a need for its personalization due to the limited effectiveness and risks of bleeding. Previously, we developed a series of computational models to describe intracellular platelet signaling and a set of experimental methods to characterize the platelets of a given patient.

View Article and Find Full Text PDF

Identification of a drought stress response module in tomato plants commonly induced by fungal endophytes that confer increased drought tolerance.

Plant Mol Biol

December 2024

Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentación (INIA/CSIC), Campus de Montegancedo, Pozuelo de Alarcón, Madrid, Spain.

Global climate change exacerbates abiotic stresses, as drought, heat, and salt stresses are anticipated to increase significantly in the coming years. Plants coexist with a diverse range of microorganisms. Multiple inter-organismic relationships are known to confer benefits to plants, including growth promotion and enhanced tolerance to abiotic stresses.

View Article and Find Full Text PDF

Calcium signaling triggers early high humidity responses in .

Proc Natl Acad Sci U S A

December 2024

Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S3B2, Canada.

Plants need to adapt to fluctuating atmospheric humidity and respond to both high and low humidity. Despite our substantial understanding of plant responses to low humidity, molecular mechanisms underlying the high humidity (HH) response are much less well understood. In this study, we investigated early responses to HH in .

View Article and Find Full Text PDF

Herein, a straightforward route for fabricating highly loaded graphite composite anodes with enhanced electrochemical performance via ultrafast, scalable flashlight irradiation is presented. When a flashlight irradiates the surface of a thick graphite anode, instantaneous and non-equilibrium photo-thermochemical interactions occur between the flashlight and the constituent materials of the anode. As a result, a porous structure (through which the electrolyte easily penetrates), a large reaction site, improved conductivity, as well as phase transformation of active graphite material can be developed on the anode surface, which can facilitate ion and electron transport at the interface with the electrolyte.

View Article and Find Full Text PDF

Classical Models of Hydroxide for Proton Hopping Simulations.

J Phys Chem B

December 2024

Department of Chemistry and Biochemistry, City College of New York/CUNY, 160 Convent Avenue, New York, New York 10031, United States.

Hydronium (HO) and hydroxide (OH) ions perform structural diffusion in water via sequential proton transfers ("Grotthuss hopping"). This phenomenon can be accounted for by interspersing stochastic proton transfer events in classical molecular dynamics simulations. The implementation of OH-mediated proton hopping is particularly challenging because classical force fields are known to produce overcoordinated solvation structures around the OH ion.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!