The phosphodiester dissociative hydrolysis of a DNA model promoted by metal dications.

J Mol Model

Chemistry Department, Universidade Federal de São Carlos, São Carlos, SP, 13565-905, Brazil.

Published: October 2024

Context: Phosphodiester bonds, which form the backbone of DNA, are highly stable in the absence of catalysts. This stability is crucial for maintaining the integrity of genetic information. However, when exposed to catalytic agents, these bonds become susceptible to cleavage. In this study, we investigated the role of different metal dications (Ca⁺, Mg⁺, Zn⁺, Mn⁺, and Cu⁺) in promoting the hydrolysis of phosphodiester bonds. A minimal DNA model was constructed using two pyrimidine nucleobases (cytosine and thymine), two deoxyribose units, one phosphate group, and one metallic dication coordinated by six water molecules. The results highlight that Cu⁺ is the most efficient in lowering the energy barrier for bond cleavage, with an energy barrier of 183 kJ/mol, compared to higher barriers for metals like Zn⁺ (202 kJ/mol), Mn⁺ (202 kJ/mol), Mg⁺ (210 kJ/mol), and Ca⁺ (223 kJ/mol). Understanding the interaction between these metal ions and phosphodiester bonds offers insight into DNA stability and organic data storage systems.

Methods: DFT calculations were employed using Gaussian 16 software, applying the B3LYP hybrid functional with def2-SVP basis sets and GD3BJ dispersion corrections. Full geometry optimizations were performed for the initial and transition states, followed by identifying energy barriers associated with phosphodiester bond cleavage. The optimization criteria included maximum force, root-mean-square force, displacement, and energy convergence thresholds.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00894-024-06184-9DOI Listing

Publication Analysis

Top Keywords

phosphodiester bonds
12
dna model
8
metal dications
8
energy barrier
8
bond cleavage
8
phosphodiester
5
phosphodiester dissociative
4
dissociative hydrolysis
4
dna
4
hydrolysis dna
4

Similar Publications

ConspectusStructural DNA nanotechnology offers a unique self-assembly toolbox to construct soft materials of arbitrary complexity, through bottom-up approaches including DNA origami, brick, wireframe, and tile-based assemblies. This toolbox can be expanded by incorporating interactions orthogonal to DNA base-pairing such as metal coordination, small molecule hydrogen bonding, π-stacking, fluorophilic interactions, or the hydrophobic effect. These interactions allow for hierarchical and long-range organization in DNA supramolecular assemblies through a DNA-minimal approach: the use of fewer unique DNA sequences to make complex structures.

View Article and Find Full Text PDF

Anti-gene oligonucleotide clamps invade dsDNA and downregulate expression.

Mol Ther Nucleic Acids

December 2024

Department of Laboratory Medicine, Karolinska Institutet, ANA Futura, Alfred Nobels Allé 8, 14152 Huddinge, Stockholm, Sweden.

Anti-gene oligonucleotides belong to a group of therapeutic compounds, which, in contrast to antisense oligonucleotides, bind to DNA. Clamp anti-gene oligonucleotides bind through a double-stranded invasion mechanism. With two arms connected by a linker, they hybridize to one of the DNA strands forming Watson-Crick and Hoogsteen hydrogen bonds.

View Article and Find Full Text PDF
Article Synopsis
  • The catalytic triad of RNase A, consisting of His12, Lys41, and His119, is crucial for cleaving RNA bonds and creates a positively charged environment at physiological pH.
  • Docking studies identified a new class of RNase A inhibitors, 1,4,5-trisubstituted-carboxylated 1,2,3-triazoles, which were synthesized using pre-functionalized compounds under solvent and catalyst-free conditions.
  • The synthesized inhibitors showed competitive inhibition with varying efficacy, with the most effective being bisthioglycolic acid and bisoxyacetic acid derivatives, demonstrating significant hydrogen bonding with RNase A and providing insights into the structure-activity relationship.
View Article and Find Full Text PDF

Effect of reactive extrusion processing conditions on the production of potato-resistant starch and its use as an additive in yogurt.

Int J Biol Macromol

January 2025

Posgrado en Ciencia y Tecnología de Alimentos, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Sinaloa, Cd. Universitaria, Av. de las Américas y Josefa Ortiz S/N, 80010 Culiacán, Sinaloa, México. Electronic address:

Starch has multiple uses in the food industry as a stabilizer, adhesive, gelling agent, thickener, and water retention agent. Nonetheless, native starch presents limitations that restrict its applications. Thus, starch can be chemically modified by reactive extrusion (REX) to overcome these disadvantages.

View Article and Find Full Text PDF

Octahedral Iron in Catalytic Sites of Endonuclease IV from and .

Biochemistry

January 2025

Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel.

Article Synopsis
  • - During infections, reactive oxygen species can cause DNA damage, necessitating a repair process that involves the enzyme endonuclease IV (Nfo), which removes defective DNA bases through hydrolysis.
  • - The crystal structure of Nfo from a Gram-positive organism shows that it contains two iron ions and one zinc ion, with unique water molecule coordination that may play a role in how the enzyme distinguishes between these metals.
  • - Nfo exhibits slow product release and optimal activity at high salt concentrations, which ties into its function and potentially significant role in organisms that thrive in salty environments.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!