Context: Phosphodiester bonds, which form the backbone of DNA, are highly stable in the absence of catalysts. This stability is crucial for maintaining the integrity of genetic information. However, when exposed to catalytic agents, these bonds become susceptible to cleavage. In this study, we investigated the role of different metal dications (Ca⁺, Mg⁺, Zn⁺, Mn⁺, and Cu⁺) in promoting the hydrolysis of phosphodiester bonds. A minimal DNA model was constructed using two pyrimidine nucleobases (cytosine and thymine), two deoxyribose units, one phosphate group, and one metallic dication coordinated by six water molecules. The results highlight that Cu⁺ is the most efficient in lowering the energy barrier for bond cleavage, with an energy barrier of 183 kJ/mol, compared to higher barriers for metals like Zn⁺ (202 kJ/mol), Mn⁺ (202 kJ/mol), Mg⁺ (210 kJ/mol), and Ca⁺ (223 kJ/mol). Understanding the interaction between these metal ions and phosphodiester bonds offers insight into DNA stability and organic data storage systems.
Methods: DFT calculations were employed using Gaussian 16 software, applying the B3LYP hybrid functional with def2-SVP basis sets and GD3BJ dispersion corrections. Full geometry optimizations were performed for the initial and transition states, followed by identifying energy barriers associated with phosphodiester bond cleavage. The optimization criteria included maximum force, root-mean-square force, displacement, and energy convergence thresholds.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00894-024-06184-9 | DOI Listing |
Acc Chem Res
January 2025
Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada.
ConspectusStructural DNA nanotechnology offers a unique self-assembly toolbox to construct soft materials of arbitrary complexity, through bottom-up approaches including DNA origami, brick, wireframe, and tile-based assemblies. This toolbox can be expanded by incorporating interactions orthogonal to DNA base-pairing such as metal coordination, small molecule hydrogen bonding, π-stacking, fluorophilic interactions, or the hydrophobic effect. These interactions allow for hierarchical and long-range organization in DNA supramolecular assemblies through a DNA-minimal approach: the use of fewer unique DNA sequences to make complex structures.
View Article and Find Full Text PDFMol Ther Nucleic Acids
December 2024
Department of Laboratory Medicine, Karolinska Institutet, ANA Futura, Alfred Nobels Allé 8, 14152 Huddinge, Stockholm, Sweden.
Anti-gene oligonucleotides belong to a group of therapeutic compounds, which, in contrast to antisense oligonucleotides, bind to DNA. Clamp anti-gene oligonucleotides bind through a double-stranded invasion mechanism. With two arms connected by a linker, they hybridize to one of the DNA strands forming Watson-Crick and Hoogsteen hydrogen bonds.
View Article and Find Full Text PDFOrg Biomol Chem
January 2025
Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721 302, India.
Int J Biol Macromol
January 2025
Posgrado en Ciencia y Tecnología de Alimentos, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Sinaloa, Cd. Universitaria, Av. de las Américas y Josefa Ortiz S/N, 80010 Culiacán, Sinaloa, México. Electronic address:
Starch has multiple uses in the food industry as a stabilizer, adhesive, gelling agent, thickener, and water retention agent. Nonetheless, native starch presents limitations that restrict its applications. Thus, starch can be chemically modified by reactive extrusion (REX) to overcome these disadvantages.
View Article and Find Full Text PDFBiochemistry
January 2025
Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!