The terahertz (THz) metamaterial sensor design is typically complex and requires substantial expertise in physics. To simplify this process, we propose a novel reverse design model based on an improved conditional generative adversarial network that integrates self-attention generative adversarial network and Wasserstein generative adversarial network (WGAN) networks, and is referred to as the self-attention conditional Wasserstein GAN (SACW-GAN) model. By using the target response of the sensor as the input to the generator network, and incorporating labeling information, an attention mechanism, and the Wasserstein distance, we achieve effective reverse design of THz metamaterial sensors. The simulation results demonstrate the model's high performance, with spectral and image accuracies of 95% and 97%, respectively. This deep learning approach offers new perspectives and methodologies for the reverse design and application of THz metamaterial sensors, significantly advancing the field.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.4c10921 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!