This study presents a comprehensive analysis of IFN-γ-Gaillardin nanoparticles (NPs) using a combination of computational, biophysical and cell-based approaches. The molecular docking analysis revealed that both hydrogen and hydrophobic forces are involved in the formation of IFN-γ-Gaillardin complex The interaction between IFN-γ and Gaillardin was further characterized by a pronounced ANS fluorescence spectrum peak and a higher intensity for IFN-γ. The Langmuir, Scatchard, and Hill analyses revealed a higher affinity and lower dissociation constant for IFN-γ NPs compared to IFN-γ alone, suggesting enhanced complex stability. Thermal gravimetric analysis confirmed that the Gaillardin interaction might improve the thermal stability of the NPs. The NPs demonstrated robust stability in various media, highlighting their potential as a delivery system. However, size increase in deionized water suggests the need for formulation optimization. Cell-based assays revealed selective cytotoxicity towards A-375 melanoma cancer cells with minimal impact on non-cancerous HaCaT cells, indicating targeted antitumor effects. Real-time PCR showed gene expression changes consistent with antitumor activity and immune response modulation. The findings suggest that IFN-γ-Gaillardin NPs have potent antitumor properties and the ability to modulate the immune system, warranting further investigation into their therapeutic applications. The development of an IFN-γ-based nanocarrier system for Gaillardin delivery offers a promising approach to melanoma therapy, setting a new direction for NP-based cancer treatment strategies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2024.136706 | DOI Listing |
Drug Deliv Transl Res
January 2025
Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China.
Atherosclerosis (AS) is a chronic inflammatory disease characterized by vascular endothelial dysfunction. In the early stage of the disease, endothelial cell injury induces the infiltration of inflammatory macrophages, which secrete large amounts of inflammatory factors, further aggravating endothelial cell dysfunction and exacerbating the disease. Therefore, it is promising for co-targeting endothelial cells and macrophages further regulating the inflammatory microenvironment and endothelial cell function for effective treatment.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Zoology, Faculty of Science, Cairo University, Giza, Egypt.
Plastic pollution and global warming are widespread issues that lead to several impacts on aquatic organisms. Despite harmful studies on both subjects, there are few studies on how temperature increases plastics' adverse effects on aquatic animals, mainly freshwater species. So, this study aims to clarify the potential impact of temperature increases on the toxicological properties of polyvinyl chloride nano-plastics (PVC-NPs) in Nile tilapia (Oreochromis niloticus) by measuring biochemical and oxidative biomarkers.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Bioengineering and iBB - Institute of Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisbon 1049-001, Portugal.
Cancer cells possess distinct bioelectrical properties, yet therapies leveraging these characteristics remain underexplored. Herein, we introduce an innovative nanobioelectronic system combining a piezoelectric barium titanate nanoparticle core with a conducting poly(3,4-ethylenedioxythiophene) shell (BTO@PEDOT NPs), designed to modulate cancer cell bioelectricity through noninvasive, wireless stimulation. Our hypothesis is that acting as nanoantennas, BTO@PEDOT NPs convert mechanical inputs provided by ultrasound (US) into electrical signals, capable of interfering with the bioelectronic circuitry of two human breast cancer cell lines, MCF-7 and MDA-MB-231.
View Article and Find Full Text PDFEnviron Pollut
January 2025
School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P. O. Box 2871, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China.
Silver-containing nanoparticles (AgCNPs) have attracted increasing concerns because of their potential adverse effects on aquatic ecosystems. However, minimal information is available regarding their concentration, distribution, and speciation in the actual environment. In this work, different species of AgCNPs, including silver nanoparticles (AgNPs), silver chloride (AgCl NPs) and silver sulfide (AgS NPs) in water and sediment samples from Taihu Lake were analyzed by a multistep selective dissolution method combined with single-particle inductively coupled plasma mass spectrometry.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Qassim 51452, Saudi Arabia. Electronic address:
Lung cancer (LC) represents a catastrophically huge problem and it is a worldwide issue that has to be resolved. There is a declining confidence in classic cancer treatments as they lack selectivity, spur widespread harm, and exacerbate the suffering of LC patients. The poor solubility and extensive cell damage of Gefitinib limit its use in treating LC.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!