Stochastic and alternating pacing paradigms to assess the stability of cardiac conduction.

J Mol Cell Cardiol

Department of Physiology, University of Bern, Bühlplatz 5, CH-3012 Bern, Switzerland. Electronic address:

Published: December 2024

Reentry, the most common cause of severe arrhythmias, is initiated by slow conduction and conduction block. Hence, evaluating conduction velocity and conduction block is of primary importance. However, the assessment of cardiac conduction safety in experimental and clinical settings remains elusive. To identify markers of conduction instability that can be determined experimentally, we developed an approach based on new pacing paradigms. Conduction across a cardiac tissue expansion was assessed in computer simulations and in experiments using cultures of neonatal murine cardiomyocytes on microelectrode arrays. Simulated and in vitro tissues were paced at a progressively increasing rate, with stochastic or alternating variations of cycle length, until conduction block occurred. Increasing pacing rate led to conduction block near the expansion. When stochastic or alternating variations were introduced into the pacing protocol, the standard deviation and the amplitude of alternating variations of local conduction times emerged as markers of unstable conduction prone to block. In both simulations and experiments, conduction delays were prolonged at the expansion but increased only slightly during the pacing protocol. In contrast, these markers of instability increased several-fold, early before block occurrence. The first and second moments of these two metrics provided an estimation of the site of block and the accuracy of this estimation. Therefore, when beat-to-beat variations of pacing cycle length are introduced into a pacing protocol, the local variability of conduction permits to predict sites of block. Our pacing paradigms may have translational applications in clinical cardiac electrophysiology, particularly in identifying ablation targets during mapping procedures.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.yjmcc.2024.10.007DOI Listing

Publication Analysis

Top Keywords

conduction block
16
conduction
14
stochastic alternating
12
pacing paradigms
12
alternating variations
12
pacing protocol
12
pacing
8
cardiac conduction
8
block
8
simulations experiments
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!